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Abstract–We present a novel methodology for recovering meteorite falls observed and
constrained by fireball networks, using drones and machine learning algorithms. This
approach uses images of the local terrain for a given fall site to train an artificial neural
network, designed to detect meteorite candidates. We have field tested our methodology to
show a meteorite detection rate between 75% and 97%, while also providing an efficient
mechanism to eliminate false positives. Our tests at a number of locations within Western
Australia also showcase the ability for this training scheme to generalize a model to learn
localized terrain features. Our model training approach was also able to correctly identify
three meteorites in their native fall sites that were found using traditional searching
techniques. Our methodology will be used to recover meteorite falls in a wide range of
locations within globe-spanning fireball networks.

INTRODUCTION

Fireballs and meteors have been observed since
antiquity by Chinese, Korean, Babylonian, and Roman
astronomers (Bjorkman 1973), while meteorites and
their unique metallurgical properties have also been
known and used by various cultures around the world
from Inuit tools (Rickard 1941) to Egyptian ceremonial
daggers (Comelli et al. 2016), their connection to each
other and to asteroids as source bodies was not
proposed until the 19th century, with the fall of the
l’Aigle meteorite (Biot 1803; Gounelle 2006). Since this
link was established, meteorites have and continue to
offer unique insights into the history of the solar
system, as well as the contemporary characteristics,
both physical and chemical, of asteroids, the Moon, and
Mars. Unfortunately, the overwhelming majority of
these ~60,000 samples have no spatial context since
their falls were not observed, leaving their prior orbits
uncharacterized. Less than 0.1% of meteorites in the

global collection was observed well enough during their
atmospheric entry to properly constrain their orbits
(Borovi�cka et al. 2015; Meier 2017; Jenniskens 2020).
This ultra-rare subset of meteorites affords some of the
most valuable information pertaining to extraterrestrial
geology, since their physical and geochemical properties
along with their orbital histories can be combined to
characterize the nature of asteroid families, and
therefore possible parent bodies, that inhabit the same
orbital space.

The best methodology for recovering meteorites
with corresponding orbits utilizes fireball camera
networks, which use automated all sky camera stations
in an overlapping arrangement such that a potential
fireball can be imaged by two or more stations. From
these observations, scientists can triangulate an
atmospheric trajectory, from which a pre-entry orbit
and a fall area can also be calculated. The first success
of such a system was demonstrated in Czechoslovakia
in 1959, with the P�r�ıbram meteorite fall (Ceplecha
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1961). This event spurred the establishment of the
Czech fireball network (Spurn�y et al. 2006), along with
multiple networks across the globe (McCorsky and
Boeschenstein 1965; Halliday et al. 1996; Oberst et al.
1998; Bland 2004; Brown et al. 2010; Colas et al. 2014;
Gardiol et al. 2016; Devillepoix et al. 2020).

The Desert Fireball Network

An ideal location for one of these networks was
determined to be the Nullarbor region in Western and
South Australia, due to its low humidity, sparse
vegetation, and typically clear skies (Bevan and Binns
1989); thus, the Desert Fireball Network (DFN) was
born (Bland et al. 2012). Since its inception, the DFN
has been responsible for the recovery of four confirmed
meteorite falls: Bunburra Rockhole, Mason Gully,
Murrili, and Dingle Dell (Towner et al. 2011; Spurn�y
et al. 2012; Bland et al. 2016; Devillepoix et al. 2018),
all of which have well-constrained orbits. To date, the
network covers approximately 30% of the land mass of
Australia, with more than 50 camera stations (Howie
et al. 2017). On average, it observes 300 fireballs per
year, typically five of which result in a meteorite fall.

For every fireball event observed by multiple
camera stations, the bright flight trajectory is
triangulated. If a terminal mass (meteorite fall) is
predicted, we incorporate wind models into Monte
Carlo simulations in order to estimate the likely fall
area (Sansom et al. 2015; Howie et al. 2017; Jansen-
Sturgeon et al. 2019). Since the fireball appears only as
a streak of light, crucial attributes pertaining to the
object such as size, mass, and shape are all co-
dependent variables. This means that the predicted fall
location results in a line, along which all of these
parameters vary (Sansom et al. 2019). Inherent
uncertainties and gaps in reported wind conditions at
altitudes all along the flight lead to a variation of
~250 m on either side of this fall line. Each predicted
fall zone is entirely dependent on the conditions of the
fireball, though typical events can result in a fall zone
2–4 km2 in area. The decision to search for a particular
meteorite is dependent on many factors, from the
geometry and confidence of the trajectory triangulation
to local terrain features and geographic accessibility.
Once the team has determined the fidelity of the
triangulation and conditions of the fall area itself, a
searching trip is commissioned to look for the fallen
meteorite.

Meteorite Recovery

Traditional methods for meteorite recovery include
two main strategies, petal searching and line searching.

Petal searching involves sending individuals out from a
central point, walking alone or in small groups in a
loop, typically a few kilometers long, looking for and
collecting meteorites along the way. This method
generally covers a larger area but comes with a higher
risk of missing meteorites in the area covered. Since this
method is usually implemented in strewn fields or in
areas with older surface ages and higher meteorite
density, such as the Nullarbor (Bevan 2006), where the
objective is to recover older meteorite finds, missing
some meteorites is less detrimental.

Alternatively, line searching is more useful when
trying to recover a meteorite fall with a well-constrained
fall line, like those observed through a fireball network.
The DFN implements this strategy by assembling
searchers in a line, spaced 5–10 m apart, then sweeping
the area ~250 m on either side of the fall line on foot.
This approach is usually able to cover 1–2 km2 for each
trip, assuming six people search 8 h per day, for
10 days. The Antarctic Search for Meteorites
(ANSMET) uses a similar method, only they are not
restricted by a fall line, and instead cover the area with
greater spacing while mounted on snowmobiles (Eppler
2011). The benefit of the line method is higher fidelity
on the area covered, due to overlapping fields of view
by the searchers, although generally, less area is covered
with this method.

When considering both the number of meteorites
found by the DFN, and the number of searching trips it
has commissioned (4 and ~20, respectively), the success
rate remains at ~20%. This relatively low rate combined
with the cost (~20,000 AUD) of sending six people on
trips for 2 weeks at a time necessitates an improvement
in the meteorite recovery rate, particularly due to the
establishment and expansion of the Global Fireball
Observatory (Devillepoix et al. 2020).

Previous Drone-Meteorite Recovery Methods

The gargantuan strides that have been made in the
last 10 years in the manufacture of high-resolution
DSLR cameras and commercial drones capable of
carrying them have opened the possibility of using both
to aid in the recovery of meteorites. Previous attempts
have been met with mixed to promising results.
Moorhouse (2014) in his honors thesis explored the
possibility of using a hyperspectral camera mounted to
a drone to look for the possibly unique spectral
signature of meteorites. This approach is unfeasible in
our framework since the best hyperspectral cameras are
prohibitively expensive (>100,000 AUD), and more
importantly, would limit our area coverage rate to little
more than 0.1 km2 per day, due to low spatial
resolution in the camera. Further complications arise
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from the fact that Moorhouse used a spectral library of
meteorite interiors, rather than meteoritic fusion crust,
which is what would appear on the surface of fresh
meteorite falls. Although meteorite fusion crusts could
have a unique spectra compared to typical terrestrial
environments, this is not explored in his work. Su
(2017) focused on the feasibility of using magnetic
sensors suspended from a drone, but this method would
preclude us from finding non-magnetic meteorites, and
also limit our area coverage to less than 0.1 km2 per
day. This approach would also be the most susceptible
to obstacles on the ground and changes in local
elevation, since they prescribe flying at a 2 m altitude.

Citron et al. (2017) relied on an RGB camera to
survey an area, and used a machine learning algorithm
to identify likely meteorites in the images. Their tests
resulted in a meteorite detection rate of 50% and
encountered a false-positive rate of ~4 per 100 m2.
These results are very promising and seem to be limited
mainly by the performance of the drone and camera
hardware. The other limitation is false positives, and
more importantly, how to separate them from
promising meteorite candidates. This is a crucial detail
when considering that a typical fall line (>2 km2),
analyzed with their model, could have over 100,000
detections, all of which must be examined by a human
in one way or another.

The work of Zender et al. (2018) also employed an
RGB camera to image meteorites in native
backgrounds. They showed the unique reflectance
signature of meteorites in each color channel and
created an algorithm to detect these signatures. This
approach was able to detect half of their test meteorites,
though it did suffer from a high rate of false positives.

AlOwais et al. (2019) also used an RGB camera,
while additionally investigating the utility of a thermal
imaging system. They also trained a number of neural
networks to detect meteorites within images. One of
their chief priorities was to create such an image
processing system that would fit onboard their
surveying drone. With this in mind, they elected to use
transfer learning (Pan and Yang 2009) from a handful
of smaller pretrained neural networks, to detect
meteorites. Their training resulted in a high model
accuracy using images taken from the internet, as well
as photoshopping cropped meteorite images onto
terrain backgrounds. These results are promising and
await validation in the form of field tests.

Our previous work on drone-meteorite recovery is
described in Anderson et al. (2019). In this previous
iteration, we trained a machine learning model on a
synthetic data set. We created it by taking survey
images from a drone, splitting them into tiles, and then
overlaying the tiles with cropped meteorite images.

Although training on these tiles yielded a high training
accuracy, it was unable to consistently identify real test
meteorites placed on the ground, most likely because
the training data lacked the native lighting conditions
and shadows seen in the real test-meteorite images.

Here, we report on updated methods to achieve a
practical system for recovering meteorites using drones
and machine learning. Such a system must fulfill the
following six requirements to be effective (1) survey at
least 1 km2/day, (2) meteorite recovery chance (success
rate) greater than 50%, (3) portable to different
terrains/locations, (4) deployable by three people or less
(1 vehicle), (5) total cost <40,000 AUD (two traditional
searching trips), and (6) data processing rate equal to
data surveying rate (including model prediction and
false-positive sorting).

METHODS

Drone and Camera Hardware

In recent years, the number of options for consumer
and commercial drones has grown dramatically, with
many options including fixed-wing, multi-copter,
vertical takeoff/landing, and even blimps. The designs
with the most flight-proven heritage, at our price range,
are fixed-wing and multi-copters. Our previous
experience has shown that fixed-wing models produce
too much image blur and are unable to achieve a
meaningful image resolution due to lower limits on
most models’ cruising altitude. Given these constraints,
we chose a DJI M600 drone to perform full-scale tests
as well as surveys of our fall sites. This drone was able
to carry our camera and gimbal payload with mass to
spare for possible later upgrades. It was also able to
perform preplanned survey flights, with meter-scale GPS
precision, for more than 15 min at a time.

We also decided to use an RGB camera, since these
systems are both scalable and widespread, as opposed
to thermal or hyperspectral cameras that are more
expensive, specialized, and are only capable of smaller
spatial resolutions. We specifically chose a Sony A7R
Mk. 3 (42 MPixel), with a 35 mm lens, set to take
images with a 1/4000 s exposure, at f/4.5, and an ISO
of 320. The total cost of the camera, drone, batteries,
and accessories was 30,000 AUD, well below the 40,000
AUD limit we self-imposed in Criteria (5).

We used the DJI GO 4 app to control the drone
manually during training data collection flights, while
the survey flights were planned and executed using the
DJI GS Pro app. With this equipment, we conducted
tests at varying altitudes and determined that an image
resolution of 1.8 mm/pixel (15 m altitude) would be
sufficient to detect most of our typical meteorite falls
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(0.3–4 kg). This would allow meteorites to appear in the
image between a size of 18 and 60 pixels in diameter.
Using this fixed resolution value, we found that this
system could survey approximately 1.3 km2/day, when
we flew nearly continuously for 7 h per day, easily
fulfilling Criteria (1). Although we had 12 h of daylight
at the time of our full-scale test, we found that
surveying less than 2.5 h after sunrise or before sunset
produced long shadows that resulted in an unacceptably
high rate of false positives.

Machine Learning Software

Since a meteorite would appear to be small (18–
60 pixels) relative to the total size of the image (42
MPixel), we decided to split each image into 125 9 125
pixel tiles with a stride of 70. This allowed a meteorite
to fully appear in at least one tile, to maximize the
chance of detection, and minimize false positives. These
tiles were then fed to a binary image classifier, a type of
deep convolutional neural network, to separate
uninteresting terrain (0) from meteorite suspects (1). We
considered any prediction over 0.9 confidence to be a
detection or a possible meteorite.

We implemented our neural network by
constructing a model in Python using TensorFlow
(Abadi et al. 2015) and Keras (Chollet 2015), the
architecture of which is shown in Table 1. Although a
sufficiently deep architecture is important when training
a neural network, the training data itself is the most
important factor, especially in our case where we
trained the model from randomized initial weights
(from scratch), rather than using a pretrained network.
This means that for a given fall site we needed
numerous, diverse examples of both True (meteorite)
and False (non-meteorite) tiles. The False tiles were
relatively easy to assemble. We simply took a survey of
an area without any meteorites, and made all of the
images into False tiles.

The True tiles required a bit more effort. Since all
the meteorites we would be searching for would have
fallen within the last 10 years, they would all have
intact, dark fusion crusts covering their surface. Fresh
meteorites such as these also tend to be minimally
altered, making them more analytically valuable to the
meteorite community. This consideration limited the
number of real meteorites that were available to us to
use in data sets. To artificially bolster the number of
True tiles we could generate, we also used stones with
desert varnish surfaces, a dark, slightly shiny exterior
that develops on some rocks in hot deserts (Engel and
Sharp 1958), as “synthetic” meteorites. At each site, we
also found stones that had a plausible meteoritic shape
(non-jagged and without a noticeable elongated axis)

and painted them black. Using this combination of
fusion-crusted meteorites, desert varnish stones, and
painted stones, we always had enough samples to make
a substantial number of True tiles.

Our procedure for making these tiles is illustrated in
Fig. 1. Step 1 consisted of laying out the stones in a line
at the fall site, spaced more than 1 m apart, and then
imaging them with the drone. This line could be either
in the fall zone or just outside of it, in order to train the
model on similar backgrounds. We gave a 1 m
separation to ensure that two stones would not appear
in the same tile, when we augmented the data later on.
We found the best way to accomplish this stone
imaging was for one person to walk ~3 m parallel to
the line of black stones, and point to each one, while
another person manually flew the drone at the
prescribed survey altitude, following the first person.
Physically pointing out each individual stone allowed us
to annotate each stone only once, avoiding a possible

Table 1. Our neural network architecture.

Layer type
Filters/
neurons

Kernel
size

Stride
size

Activation
function

Convolutional 2D 30 3 1 Rectified

linear unit
Batch normalization
Max pooling 2 2

Convolutional 2D 60 3 1 Rectified
linear unit

Batch normalization

Max pooling 2 2
Convolutional 2D 120 2 2 Rectified

linear unit
Batch normalization

Max pooling 2 1
Convolutional 2D 240 3 1 Rectified

linear unit

Batch normalization
Max pooling 2 1
Flatten

Dense 100 Rectified
linear unit

Dropout 30%
Dense 50 Rectified

linear unit
Dense 25 Rectified

linear unit

Dense 5 Rectified
linear unit

Dropout 30%

Dense 5 Rectified
linear unit

Dense 1 Sigmoid
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double appearance of a particular stone in both the
training and validation sets. For Step 2, we drew a tight
bounding box around each stone and recorded the box’s
height, width, and position in the image. These
annotations were completed using ImageJ (Schneider
et al. 2012). We typically laid out ~100 stones at a time;
15% of these stones and their resultant tiles are set
aside for validation, not used in training. This ensured
that the validation set only consisted of stones that the
model had never seen, as opposed to unseen
permutations of stones that the model was already
familiar with.

At Step 3, we took each annotation, in both the
training and validation sets, and strode by 15 pixels in
both axes over each meteorite, creating a new tile at
each stride, while keeping the stone fully in the tile
frame. Each of those tiles was then rotated in intervals
of 90° and saved for each permutation. These strides
and rotations force each rock to appear in nearly every
position of a tile, without any preference in local
directionality, that is, shadows and windblown
vegetation. We repeat this data collection process at
different times of the day, at different sections of the

fall line, to include as much variety as possible. Details
like these are crucial when making a widely generalized
training set.

This process ideally generates ~50,000 True tiles for
the training set. To assemble the False tiles, we flew the
drone 350 m, parallel to the fall line, taking images all
along the way. By splitting the images into tiles, we
generated ~2,500,000 False samples. The process of
laying out stones, imaging everything, and making the
annotations typically took an hour.

Since dramatically unbalanced data sets can
negatively affect training (Miroslav and Matwin 1997),
we could only train with as many False tiles as we had
True tiles, to keep a 1:1 ratio. A simplified example of
unbalanced data sets is a training set containing 1 True
and 99 False samples. Mathematically speaking, the
shortest path to the model achieving a high accuracy
would be for it to label everything false, resulting in an
accuracy of 99%. Obviously, this kind of solution is
useless, which is why we must maintain a ratio as close
to 1:1 as possible. We did this by randomly selecting
50,000 False tiles from the pool of 2.5 million, and
combining them with the 50,000 True tiles, to form the

Fig. 1. Our workflow for obtaining meteorite training data. Step 1 consists of laying out the stones on the ground >1 m apart,
and imaging them at a 1.8 mm per pixel resolution. Step 2 shows how we record the position, height, and width of each rock in
the full-sized image, by drawing a bounding box. Step 3 is where we generate the tiles to be used for training and validation.
(Color figure can be viewed at wileyonlinelibrary.com.)
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whole training set. We also included ~8000 False tiles
from the 2.5 million into the validation set, ensuring
they did not also appear in the training set.

We trained on our data set for 150 epochs (rounds
of training), using a batch size of 250, with 400 steps
per epoch, which ensured that each tile is seen by the
model once per epoch. The validation set was evaluated
at the end of each epoch, also using a batch size of 250
with 64 steps. For smaller data sets, we adjusted our
batch size and steps per epoch such that the product of
these two values equaled the size of the training set.

Once the model completed training, we judged its
utility based on its meteorite detection chance, and rate
of false positives. The meteorite detection chance was
determined by predicting on each of the True tiles in
the validation set, and dividing the number of
predictions over 0.9 confidence by the total number of
tiles. This provided a metric for how well the model
could correctly identify new black rocks that it had
never seen. For the false-positive rate, we wanted to
obtain a more widespread and representative value that
would reflect model performance across the whole fall
zone. So we randomly selected 50 images from the
survey of the fall line and predicted on them with the
model, recording the average number of detections
across all the images.

False Positive Sorting Interface

An issue we anticipated with any model we would
train was the processing of false positives. Even in best-
case scenarios, where we assume a model accuracy of
99.999%, with ~8500 tiles per image and ~650 images
per flight, a model would return approximately 5500
detections per flight, and more than 150,000 per fall
line. Thus, we required a tool to help searchers
efficiently examine each of these model detections, and
determine which of these were obvious false positives
and which ones required further investigation. We
created a graphical user interface in Python using the
Tkinter module to accomplish this task (Fig. 2).

The program displays nine detections at a time, in a
3 9 3 grid pattern. Each grid space is mapped to
numbers 1–9 on a standard keyboard’s keypad (1 for
lower left, 5 for middle-center, 9 for upper right). Each
detection is displayed such that the frame is centered on
the detection tile, outlined in a yellow box (~25 cm on
one side), and extends 70 pixels beyond the target tile,
to give the user context of the larger area. Below the
grid, three images of meteorites are displayed, scaled
from the smallest to the largest meteorite possible for
that fall site (lowest mass with iron density, to highest
mass with chondritic density, respectively). This allows
users to easily reference how big a meteorite should

appear in the tiles. If the user decides that the tile likely
contains a meteorite, they press the number on the
keypad corresponding to that grid space, before
advancing to the next set. The program also allows the
user to remove their responses from the current set of
nine tiles, as well as go back to the previous set.

Through testing trials, we determined that the
average user could sort through ~120 tiles per minute.
Assuming 150,000 detections per fall line, the task of
sorting through these data would take over 20 labor
hours. This problem of staying focused over long
periods of time is known as “vigilance” by human
factors psychologists, who have observed decrements in
user performance over extended task sessions (See et al.
1995). To mitigate such decrements in vigilance, we
ensured that each user would only sort for 20 min
increments. This was chosen as a conservative time limit
according to Teichner (1974), who found the vigilance
decrement to be fully observed 20–35 min into a task.
Additionally, to reduce the consequence of individual
errors, each tile was inspected by two separate users.
We also anticipated that the overwhelming majority of
detections would be false positives, thereby
counterproductively enticing the users to speed through
the tiles, without properly inspecting each one. The
resulting consequence of such task parameters has been
shown in signal detection literature to result in the
missed detection of such rare signals (Stanislaw and
Todorov 1999), in our case the user detection of a
meteorite. To combat this, we added a test function to
the program, whereby each set of nine tiles had a
uniform probability of containing 0, 1, or 2 test tiles,
taken from the training set. This forced the user to slow
down and select, on average, one tile per set, thus
reducing the rarity of a “hit.”

A final failsafe was included in this sorting task,
such that once the user missed two test tiles during a
sorting session, the program would shut down, forcing
the user to take a break. The user’s score of successfully
completed tests, along with the number of meteorite
candidates identified, is shown at the top of the display.
Both of these strategies, increasing the “hit” rate and
providing performance feedback, have been shown to
combat the vigilance decrement (Hancock et al. 2016).

Once two users sorted through the detections for a
flight, we overlaid the original images with bounding
boxes around meteorite candidates. We also set aside
the false positives, so that we may use them for
retraining if needed.

RESULTS

We conducted small-scale tests of our methodology
by visiting four sites in Western Australia and training a
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model at each location. Although they were not at real
meteorite fall sites, they were all located within the
DFN’s operational area, and could conceivably be
representative of future fall sites. These sites and the
results from the models we trained for them are listed in

Table 2. For these smaller tests, we only obtained
training data for ~30 synthetic and real meteorites and
surveyed less than 0.1 km2 at each site.

We also conducted a full test of our methodology
by visiting one of our fall sites, DN150413_01,

Fig. 2. Our sorting user interface we designed to aid in the separation of candidates from false positives. Test tiles (True tiles
from the model training set) for this set appear in the center-left and center-right positions. Users press the corresponding
number on the keypad to mark the tile(s) as a likely meteorite. (Color figure can be viewed at wileyonlinelibrary.com.)

Semi-automated meteorite recovery 2467

www.wileyonlinelibrary.com


northeast of Forrest Airport, Western Australia (30.764
S, 128.184 E). We obtained training data for this fall
site at different times during the day (morning, cloudy
mid-morning, midday, early afternoon, and late
afternoon). Over the course of 2 days, we also surveyed
2 km2 of the fall zone, so that we could identify
meteorite candidates for secondary inspection in an
upcoming expedition. We also placed four painted
rocks, unseen by the model, within the survey area and
recorded their GPS coordinates. This served as a test of
our ability to use the model to correctly identify a
meteorite candidate, correctly sort it with the user
interface, and accurately correlate the image’s GPS
coordinates to those recorded by our handheld unit.
During the survey, each of three team members was
assigned a distinct role during flight operations. The
first team member’s job was to fly the drone and
calibrate the camera, the second oversaw data collection
and backups on the computer, and the third was
responsible for cooling and charging the batteries.

When we returned from the field, we trained a
model on our RTX 2080 Ti (11 GB RAM) GPU, with
an Intel i9-9000 CPU for approximately 3 h (150
epochs). This resulted in a final training accuracy of
99.07% and a validation accuracy of 98.65%.
Furthermore, we achieved a meteorite detection chance
of 98.71%, and a false-positive rate of 2.5 per image.
Using the trained model, the detection algorithm was
able to process 1 day’s images in 22 h. The model
returned a combined total of 92,595 detections for the 2
days of survey, which we were able to sort through in
12 h, excluding breaks. Sorting through all of our
detections yielded 752 meteorite candidates. Of the four
test rocks we laid out, we successfully located three of
them (by comparing GPS coordinates) using our
prescribed searching methods, meaning that we
successfully met fulfilled Criteria (2).

Four months after this initial trip, when the COVID-
19 travel restrictions were lifted in Western Australia, we
revisited the same site northeast of Forrest Airport. We
began by inspecting ~20 of the 749 candidates in-person
and noticed that they generally belonged to one of two
populations: dark stones (most likely iron-rich siliceous

rock) and small holes in the ground (<7 cm in diameter)
most likely made by small animals. The small hole
population was far more numerous than the dark stone
group and was easy to distinguish in the images, once we
knew which features to look for. We then sorted through
the remaining ~700 candidate images and narrowed the
list to 32 candidates that did not appear to be holes in the
ground. Unfortunately after inspecting these remaining
candidates, we found that none of them were meteorites.

On this same follow-up trip, we also visited a
second, separate fall site located northwest of Forrest
Airport. For this site, we employed the traditional line
searching technique and found the meteorite on the
afternoon of the first day. Using our Mavic Pro drone,
we took ~100 images of this meteorite (Fig. 3, left) from
a top-down view, with heights ranging from 1 to 30 m.
We also generated training data at this site, trained a
model, and used it to predict on 86 of these images
(those in which the meteorite was between 10 and 80
pixels in diameter). The model was able to correctly
identify the meteorite in 84 of the 86 images, or 97%.

During a separate trip, whereby two members of
our research group were scouting a third fall site south
of Madura, Western Australia, for an upcoming six-
person searching trip, they discovered the meteorite in
question (Fig. 3, right), on the dirt road which roughly
bisected the predicted fall line. They also used the
Mavic Pro to take images of the meteorite from
altitudes of 2 to 30 m, and created training data on-site.
When they returned from the trip, we trained a model
and predicted on the 27 meteorite images, finding that
the model correctly identified the meteorite in 24 of the
images (88% success rate). At the writing of this article,
these two meteorites have not yet been registered with
the Meteoritical Bulletin, as their classifications are
forthcoming.

An additional and final test of our approach
involved using our Forrest-NE model to predict on a
drone image of an older meteorite find, shared with us
by a volunteer meteorite hunter who regularly searches
in the Nullarbor. We found that the model correctly
identified the old chondrite with a prediction value of
1.0: a perfect match.

Table 2. Distinct models at various locations within the DFN. Model performance is dependent on the size of the
training data set.

Location (Lat, long)
Total number
of training tiles

Training
accuracy (%)

Meteorite
detection (%)

False-positive
rate (per image)

Ledge Point (�31.151, 115.395) 16,352 92.58 68.50 21.7

Dalgaranga (�27.635, 177.289) 30,874 97.03 85.60 6.5
Lake Kondinin (�32.496, 118.192) 32,348 96.85 86.70 5.1
Balladonia (�32.370, 124.790) 98,470 98.73 93.20 1.3
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DISCUSSION AND FUTURE WORK

Our smaller tests (Table 2) show that more training
data makes for a more robust model in terms of both
meteorite detection and false positives, reinforcing the
notion that more training data makes for a better
model. These tests also showcase the portability of our
methodology, accounting for variations in available
training data, which successfully satisfies Criteria (3).

The results of the full test, while not a total success,
are a promising prospect for the future of meteorite
recovery. Not only is this methodology capable of
locating test meteorite analogs, it is able to cover a fall
zone nearly six times faster than a traditional line
search, when accounting for invested labor. If we
assume that in the future we would predict on images
and sorting through detections in the field, this rate of
data processing can keep pace with data collection
through a combination of switching sorting users and
simply taking breaks, satisfying the final outstanding
Criteria (6).

There are two possibilities as to why the full test did
not result in a complete success of recovering the
meteorite. The first explanation is that our methodology
failed at some stage of the searching, whether the model
failed to detect the meteorite, or we failed to label the
detection as a candidate. The second possibility was that
we did not cover enough of the fall line. Since the initial
surveying trip was limited to 2 days, we were only able to
cover 2 km2 of the entire 5 km2 fall zone. Our other
successes with the models correctly identifying two fresh
falls and one old find, all in situ, lead us to believe that
the second explanation is more likely. For this reason, we

plan on returning to the Forrest-NE fall site and
surveying the remainder of the fall zone.

We will also embark on an extensive surveying
campaign of all of our meteorite fall sites. We initially
plan on training a new model for each fall site, using
randomly initialized weights. Although as we gain more
training data from a range of diverse fall sites, we will
investigate the possibility of combining data sets and
training a “base model” whose final weights will then be
used as the initial weights for each new model we train.
This future approach may improve the generalizability
of our models and reduce training time on-site.

The Python software that we have created, as well
as our trained model weights, will be made available to
collaborators upon request, so that the entire
meteoritics community can benefit from this new
method of semi-automated meteorite recovery.
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