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Abstract–Fireball networks establish the trajectories of meteoritic material passing through
Earth’s atmosphere, from which they can derive pre-entry orbits. Triangulated atmospheric
trajectory data require different orbit determination methods to those applied to
observational data beyond the Earth’s sphere of influence, such as telescopic observations of
asteroids. Currently, the vast majority of fireball networks determine and publish orbital
data using an analytical approach, with little flexibility to include orbital perturbations.
Here, we present a novel numerical technique for determining meteoroid orbits from fireball
network data and compare it to previously established methods. The re-entry of the
Hayabusa spacecraft, with its known pre-Earth orbit, provides a unique opportunity to
perform this comparison as it was observed by fireball network cameras. As initial sightings
of the Hayabusa spacecraft and capsule were made at different altitudes, we are able to
quantify the atmosphere’s influence on the determined pre-Earth orbit. Considering these
trajectories independently, we found the orbits determined by the novel numerical approach
to align closer to JAXA’s telemetry in both cases. Using simulations, we determine the
atmospheric perturbation to become significant at ~90 km—higher than the first
observations of typical meteorite dropping events. Using further simulations, we find the
most substantial differences between techniques to occur at both low entry velocities and
Moon passing trajectories. These regions of comparative divergence demonstrate the need
for perturbation inclusion within the chosen orbit determination algorithm.

INTRODUCTION

Fireball networks track meteoritic material as it
transits our atmosphere. Triangulated observations of
fireballs provide precise trajectories for these objects. By
propagating such trajectories back in time, we can
acquire orbital data for meteoroids, be it of cometary or
asteroidal origin. For objects <10 m diameter—typically
below the resolution of telescope observations—fireball
networks are currently the only method capable of
delivering bulk orbital data sets for this class of solar
system material. Fireball networks have an additional
value in providing trajectory data that can facilitate the
physical recovery of meteorites with orbits.

As of early 2018, only a mere 32 meteorites have
been recovered where their observed atmospheric entry
data allow an orbital trajectory to be determined with

varying degrees of reliability and precision (Granvik and
Brown 2018). The accurate knowledge of the origins of
this material is vital to our understanding of solar system
formation. Differences in orbital characteristics, however
slight, will be amplified with time as material is
propagated back perhaps thousands, if not millions of
years in order to find a match to a potential parent body
or source region. Using probabilistic orbital evolution
modeling techniques (Bottke et al. 2002), one can trace
back a meteoroid’s determined pre-Earth orbit and
probabilistically link the observed space rock to
particular near-Earth object source regions. The
mechanism triggering the migration of an object’s stable
orbit, such as an unstable mean-motion orbital resonance
or a close encounter with a planetary body, can be
probabilistically identified. Understanding a meteoroid’s
origin, and thereby uncovering a piece of recent
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dynamical history of the solar system, requires both
accuracy and precision in the meteoroid’s initial orbit
determination techniques.

One such analytical technique is outlined in section
11 of the work by Ceplecha (1987), hereafter referred to
as “C-87.” It includes two corrections to the initial
velocity vector based on simplifying assumptions to
determine the meteoroid’s pre-Earth orbit. An alternative
approach would be a numerical propagation method—an
integration-based approach that iteratively propagates a
meteoroid’s initial state vector, through the most
significant perturbations, back in time until the Earth’s
influence is considered negligible, at which point the pre-
Earth orbit is produced.

Historically, C-87 has long been used as the method
of choice due to its computational ease and convenience.
However, as computational power has increased, so has
the viability of the numerical approach. There are at least
nine groups that publish orbital data from meteor and
fireball observations, and C-87 is used by all but one of
them (C-87: Spurn�y et al. 2007; Madiedo and Trigo-
Rodr�ıguez 2008; Brown et al. 2010; Gural 2011; Cooke
and Moser 2012; Rudawska and Jenniskens 2014; Colas
et al. 2015; Wi�sniewski et al. 2017; Numerical: Dmitriev
et al. 2015). The current numerical approach used by
Dmitriev et al. (2015) is available as part of the stand-
alone Meteor Toolkit package (hereafter referred to as
“MT-15”) and will be compared alongside the novel
numerical propagation method described in this work.
This new numerical method will hereafter be referred to
as “JS-19.”

Some studies have been established in the past
comparing the analytical and numerical approaches to
orbit determination (Clark and Wiegert 2011); however,
these comparisons were conducted using published
meteor observations with no pre-Earth sightings. To
compare the various orbit determination methods, a
real-world example with well-recorded data both before
and after it encounters Earth’s perturbing influence,
namely the pre-Earth orbit and the triangulated
atmospheric trajectory, respectively, would be
invaluable.

In November 2005, Japan Aerospace Exploration
Agency’s (JAXA’s) Hayabusa mission successfully
retrieved samples from the near-Earth asteroid 25143
Itokawa (Nakamura et al. 2011). On its scheduled return
to Earth, the Hayabusa spacecraft made several
trajectory correction maneuvers, the last being about 3
days before predicted re-entry over the Woomera
Prohibited Area (WPA), South Australia. Following this
last correction burn, the orbit was calculated using precise
positional telemetry by the Deep Space Network team at
NASA’s Jet Propulsion Laboratory (Cassell et al. 2011).
On June 13, 2010, 13:52 UT, the Hayabusa spacecraft

and its return capsule made a coordinated ballistic re-
entry over WPA. This re-entry was recorded by two
temporary stations set up by JAXA’s ground observation
team (Fujita et al. 2011), four autonomous observatories
of Australia’s Desert Fireball Network (Borovicka et al.
2011), and one optical imaging station within NASA’s
DC-8 airborne laboratory (Cassell et al. 2011). Although
it is not strictly a meteoroid, the Hayabusa mission is a
fitting candidate for orbit determination analysis. Its re-
entry mimicked real meteoroid entry phenomena in its
ballistic nature and was observed in a similar fashion to
fireballs, while also possessing a “ground truth” orbit
from DSN telemetry.

METHODS

All orbit determination methods studied in this
paper utilize the same triangulated observation data and
all return identical outputs, providing an excellent
setting for comparison and analysis.

The inputs are simply the meteoroid’s initial “state”
taken at the highest reliable altitude that was observed.
This initial state includes the absolute UTC time of
observation (epoch time), and the triangulated position
and velocity vectors at this time, expressed in Earth-
centered inertial (ECI) coordinates.

The outputs are the six classical orbital elements
(COEs) that describe the original orbit of the meteoroid
before the gravitational influence of the Earth/Moon
system at the initial observed time, or epoch time. These
orbital elements are the semimajor axis (a), eccentricity
(e), inclination (i), argument of periapsis (x), longitude
of ascending node (Ω), and the true anomaly (h).
However, the true anomaly is generally not quoted for
entry orbits if the epoch time is provided.

In this method section, we will first review the
method C-87 outlined in Ceplecha (1987) by presenting
the approach in a more conceptual and modern setting,
before going on to describe our new numerical method
(JS-15). A detailed description of the Meteor Toolkit
(MT-15) approach is given by Dmitriev et al. (2015).

Analytical Method of Ceplecha (C-87)

As first outlined in Ceplecha (1987), C-87 is based on
the assumption of an initial hyperbolic collision orbit
with Earth. Using the mathematical theory of conics, the
hyperbolic entry orbit’s asymptote can be determined,
which is taken to be the local path of the meteoroid
around the Sun before Earth’s gravitational influence, as
shown in Fig. 1. There are two adjustments made to the
initial velocity vector that best estimate this local path
relative to Earth. These adjustments are made to the
magnitude and zenith angle of the initial velocity vector.
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The magnitude adjustment to the initial velocity
vector is twofold; first to account for the atmospheric
influence, and second to account for Earth’s gravitational
attraction component. The pre-atmospheric velocity, v∞,
can be determined using methods described in the
appendix of Pecina and Ceplecha (1983, 1984). Using this
inertial pre-atmospheric velocity, v∞, and the escape
velocity at that particular height, vesc, the magnitude of
the resulting geocentric velocity vector, vg, can be
determined as follows:

vg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kv1k2 � v2esc

q
where vesc ¼

ffiffiffiffiffiffiffiffiffiffiffi
2 � le
kx0k

s
(1)

where le = G 9 me = 3.986005 9 1014 m3 s�2 (Moritz
2000) is Earth’s standard gravitational parameter, and
x0 is the inertial position corresponding to the highest
triangulated point.

The direction of the geocentric velocity vector is
simply the direction of v∞ with an adjustment to its
zenith angle, zc, as follows:

ag ¼ ac; zg ¼ zc þ dzc

where dzc ¼ 2 � tan�1 kv1k � vg
kv1k þ vg

tan
zc
2

� �� �
(2)

where ac and zc are the local azimuth and zenith angles
of the observed radiant, corrected for Earth’s rotation,
and ag and zg are the azimuth and zenith angles of the
geocentric radiant.

The geocentric velocity vector can now be
determined from the velocity’s magnitude, azimuth, and

zenith angles formulated above. The resulting orbit is
then calculated by transforming the geocentric position
and velocity vectors, x0 and vg, into heliocentric inertial
coordinates (J2000) followed by heliocentric COEs.
Notice there are no modifications to the position of the
meteoroid due to Earth’s influence, or any other
perturbing body, as it is assumed that any adjustment
would make near negligible difference to the resulting
orbital elements.

We must note that C-87 cannot determine the orbit
of an entry object that had been gravitationally bound
to Earth due to its primary assumption of an initial
hyperbolic collision orbit with Earth. We must also note
that the determination of the pre-atmospheric velocity,
v∞, as outlined in the appendix of Pecina and Ceplecha
(1983), is not as well known among the meteor
modeling community, and is frequently mistaken as the
velocity at the first triangulated point, v0 (Vida et al.
2018). This will lead to a misuse of Equations 1 and 2
in calculating vg as the Earth’s atmospheric influence
will not be accounted for. In order to objectively assess
the effect of omitting the pre-atmospheric velocity
determination on orbital calculations, we will
additionally analyze C-87 setting v∞ to v0.

Novel Numerical Method (JS-19)

Unlike C-87, JS-19 makes no assumptions about the
origin of the meteoroid and can accommodate
perturbations with ease. This method effectively rewinds
the clock by propagating the meteoroid’s state back in
time to a point well outside the Earth’s sphere of
influence (SOI).

Fig. 1. Ceplecha’s orbital assumption in the local region of Earth, where vg is the uninfluenced pre-Earth velocity vector and v∞ is
the (Earth affected) velocity vector determined outside the atmosphere using the method described in the appendix of Pecina and
Ceplecha (1983, 1984). [Globe image credit: earthobservatory.nasa.gov] (Color figure can be viewed at wileyonlinelibrary.com.)
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Modified equinoctial orbital elements (EOEs) are
used to describe the meteoroid’s state as these elements
avoid the singularities inherent in the COE
parameterization at zero- and ninety-degree inclinations
and zero eccentricity (Cefola 1972; Betts 2000). The
initial conditions, namely the highest reliable inertial
position, x∞, and velocity, v∞, are converted from
inertial vector coordinates into COEs and then from
COEs into EOEs, as outlined in the Determining the
orbital elements and Modified Equinoctial Orbital
Elements, sections, respectively, of Colasurdo (2006).
These EOEs are vectorized following the European
Space Agency’s notation (Walker et al. 1985) as:

y ¼ ½p; f; g; h; k;L�T (3)

In order to propagate the meteoroids state elements
back to its originating orbit, a dynamic model (or a set
of ordinary differential equations) is needed, namely the
variation of parameters on the equinoctial element
model (Betts 2000):

_y ¼ A � utot þ b (4)

b ¼ 0 0 0 0 0
ffiffiffiffiffiffiffiffiffiffiffi
le � pp

w=pð Þ2
h iT

(6)

where A is the state rate matrix, b the state rate
constant, and utot is the total perturbing acceleration in
the body frame [radial, tangential, normal]. Also w, s, r,
and b are some shorthand notations of common
expressions:

w ¼ 1þ f � cosðLÞ þ g � sinðLÞ; s2 ¼ 1þ h2 þ k2

r ¼ p=w; b ¼ h � sinðLÞ � k � cosðLÞ: (7)

For accurately determining the original orbit of
incoming meteoroids, perturbations need to be added to
this dynamic model. However, as there will be relatively

minimal net movement of the meteoroid through time,
the only perturbations that would non-negligibly affect
the resulting orbit are those produced by the Earth/
Moon system. These include the atmospheric drag, and
third body gravitational and zonal harmonic
perturbations.

The first zonal harmonic (J2) perturbation is due
to the Earth’s oblate shape, and is about three times
the magnitude of the next zonal harmonic (Moritz
2000). Therefore, the Earth’s J2 zonal harmonic
perturbation is the only one considered, and is
calculated in the body frame as follows (Kechichian
1997):

uJ2 ¼
�3 �le � J2 �R2

e

r4 � s4
s4� 12 �b2� �

=2
4 �b � h � cos Lð Þþk � sin Lð Þð Þ

2 �b � 2� s2
� �

2
4

3
5 (8)

where J2 = 1.08263 9 10�3 (Moritz 2000) is the
dynamical form factor of the Earth, and Re = 6371.0 km
(Moritz 2000) is the Earth’s mean radius.

The Newtonian third body perturbation
equation has been shown to often promote substantial
numerical errors due to the significantly different

magnitude of the terms involved (Battin 1999). To
avoid this numerical inaccuracy, the following
equation (Betts and Erb 2003) is used to model third
body perturbations in the inertial (J2000) frame:

utb ¼�ltb
xm þ f � qtb
kxm � qtbk

where f¼ 3 � qþ 3 � q2 þ q3

1þ 1þ qð Þ3=2
and q¼ xm � xm � 2 � qtb

kqtbk2
(9)

where xm is the position of the meteoroid, qtb the
position of the third body, and ltb the standard
gravitational parameter of the third body.

A ¼

_p
_f

_g
_h
_k

_L

2
666666664

3
777777775
¼ 1

w

ffiffiffiffiffi
p

le

r
0 2 � p 0

w � sin Lð Þ wþ 1ð Þ � cos Lð Þ þ f �g � b
w � cos Lð Þ wþ 1ð Þ � sin Lð Þ þ g f � b

0 0 s2 � cos Lð Þ=2
0 0 s2 � sin Lð Þ=2
0 0 b

2
666666664

3
777777775

(5)
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Finally, while the atmospheric drag acceleration is a
fairly standard formula, the density of air in the upper
atmosphere is not. The density in this region varies with
not only height, but latitude, longitude, time, and solar
activity. To incorporate all these subtle effects, we
utilized the empirical NRLMSISE-00 atmospheric
model (Picone et al. 2002) to calculate the atmospheric
density (qair) within our drag equation:

udrag ¼ �qair � Cd � S � kvrelk � vrel
2 �M (10)

where M is the mass of the meteoroid, Cd the drag
coefficient, S the meteoroid’s cross-sectional area, and
vrel the meteoroid’s velocity vector relative to the
surrounding atmospheric air. Note that like the third
body perturbation, the atmospheric drag perturbation
needs a coordinate transformation into the body frame
to be used in the dynamic model.

Now that the dynamic model is established
(Equations 3–10), a numerical integrator is needed to
propagate the meteoroid’s state variables through time.
We have chosen a Runge–Kutta Dormand–Prince
(RKDP) (Dormand and Prince 1980) method for the
integration due to its ability to constrain relative errors
by internally controlling step size—a new approach to
numerical fireball orbit modeling. Additionally, it
supports a good accuracy to computation ratio, namely
fifth-order accuracy for six function evaluations per step.

The RKDP method computes and compares a
fourth- and fifth-order Runge-Kutta solution in parallel
to determine whether the current time step is sufficiently
small. If the difference between the solutions exceeds the
error bounds, then the time step is decreased (by 1/10)
and the RKDP is rerun on the current iteration step. If
this difference is much smaller than the error bounds,
the current solution is taken and the time step is
increased (by 1/10) for the next RKDP iteration. The
coefficients of the RKDP were chosen to minimize the
error of the fifth-order solution; therefore, it is this
solution that is used in the next step of the integration
procedure.

Starting with an initial step size estimate of a tenth of
a second, we use the RKDP iterative integration process
to propagate the meteoroid’s ECI EOE’s, yinitial, to the
edge of the Earth’s SOI, where the coordinates are
converted into the Sun centered inertial frame (J2000).
The integration process is then continued until the
meteoroid has propagated to 10 SOI, upon which the
Earth/Moon perturbations are removed from the
dynamic model and the meteoroid is propagated back to
epoch time. The resulting orbital elements, yfinal, reflect
the meteoroid’s original orbit around the Sun expressed
in J2000 coordinates, and can be trivially converted to
COEs as described in section 3.4 of Colasurdo (2006).

Discontinuities can arise when switching between
geocentric and heliocentric reference frames. To avoid
such a discontinuity at the limit of Earth’s SOI, the Sun
and Moon are considered perturbations when in the
geocentric frame, while the Earth and Moon are
considered perturbations within the heliocentric frame.

The JS-19 method described above is similar to that
of MT-15 (Dmitriev et al. 2015), but differs in the
choice of state representation, integration method, and
error handling.

RESULTS AND DISCUSSION

To properly compare these methods for their
accuracy, an example object with both a measured orbit
and a measured bright flight entry would be invaluable
for analysis. The re-entry of the Hayabusa mission
constitutes an excellent calibration event in this regard,
with a measured pre-Earth rendezvous orbit, as
determined by the spacecraft’s navigational systems, and
an observed re-entry trajectory, as published in
Borovicka et al. (2011).

JAXA’s engineering team kindly provided their
orbital telemetry data for the Hayabusa mission (through
personal communication) at 2010-06-09T06:04:00.0
UTC, just after its final correction maneuver (TCM-4), in
the form of a J2000 equatorial (Earth-Centered Inertial)
state vector. This position and velocity state is easily
converted into the following COEs:

Rx

Ry

Rz

Vx

Vy

Vz

2
666666664

3
777777775
ECI

¼

�1:074047355� 106 km

1:232756795� 106 km

0:935509892� 106 km

2:751442755 km s�1

�3:231296260 km s�1

�12:442756954 km s�1

2
666666664

3
777777775
)

a

e

i

x

X

h

2
666666664

3
777777775
¼

1:32381AU

0:25732

1:68383�

147:47773�

82:46569�

27:71277�

2
666666664

3
777777775

(11)
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Triangulated positions of the Hayabusa re-entry
from ground-based observations are detailed in
Borovicka et al. (2011). Two reduced trajectories given in
this work are for the observed re-entry of the spacecraft
and for the capsule; these can be used as two separate
cases for orbit determination method comparisons. The
tabulated triangulated positions and time in Borovicka
et al. (2011) are used to determine the velocity, thereby
defining the initial conditions of the luminous trajectories
(see the Appendix). In both the spacecraft and capsule
cases, the numerical propagation methods will integrate
the corresponding object back to the time of telemetry
reading for consistent orbital comparisons. Since C-87
does not consider any perturbations, an epoch change
would simply require a two-body propagation, altering
only the orbit’s anomaly (h). As this sixth element is not
needed for orbit comparison analysis, the epoch
recalculation is not necessary.

In the two cases, we compare the orbit determined
using the three different methods (C-87, MT-15, and
JS-19). As the atmospheric correction to the initial velocity
vector (Pecina and Ceplecha 1983, 1984) used in C-87 is
not always applied (Vida et al. 2018), we shall additionally
provide the orbital results of C-87 by equating v∞ and v0
(see the Methods section) to assess the effects.

Hayabusa’s Orbit Determined from the Spacecraft’s

Re-entry

The initial position vector and corresponding initial
time of the spacecraft can be taken directly from table 2
of Borovicka et al. (2011) at a height of 99.88 km.
However, as there was no given radiant vector
describing the spacecraft’s velocity, the initial velocity
vector of the spacecraft was deduced using a straight
line least squares approach on the first three1

triangulated positional data points with timing in table
2 of Borovicka et al. (2011).

Additionally, the atmospheric perturbation model
requires an estimated mass and cross-sectional area of
the object to more accurately model the aerodynamics.
While the mass and shape of the spacecraft are
relatively well documented to be 415 kg and
1.5 m 9 1.5 m 9 1.05 m cube, respectively, the
orientation of the spacecraft with respect to the
atmosphere is more uncertain. This leaves us to assume
that the spacecraft’s cross-sectional area corresponds to
its most aerodynamically stable orientation.

Using these initial conditions, the heliocentric orbit
is calculated using all three methods and is compared to
the orbit derived from the spacecraft’s navigation
system (Table 1; Fig. 2). The Southworth and Hawkins
(1963) similarity criterion is included in Table 1 as a
quantitative measure of the orbital difference between
JAXA’s telemetric orbit and the orbit determined using
the respective methods.

The perturbations included in JS-19 are those of
the Earth, Moon, and Sun’s gravity; the Earth’s first
zonal harmonic (J2); and the atmospheric drag. These
are the nonreversible, significant perturbing effects.
Their respective strengths are calculated iteratively
during the backward integration of JS-19 and are
represented in Fig. 3. C-87 neglects the majority of
these influences.

Hayabusa’s Orbit Determined from the Capsule’s

Re-entry

The second interesting case is that of the Hayabusa
capsule’s re-entry; it is only distinguished from the other
parts of ablating spacecraft much lower down in the
atmosphere (~65 km altitude). Although the capsule has
already decelerated heavily by this point, its mass and
cross-sectional diameter are very well documented to be
20 kg and 40 cm, respectively. This sets us up for an
excellent comparative study as to the effects of the

Table 1. The calculated heliocentric classical orbital elements for the Hayabusa satellite’s Earth rendezvous as
compared to the telemetric orbital data at T = 2010-06-09T06:04:00.0 UTC.

Heliocentric orbital elements

(ECLIPJ2000)

Telemetry

dataa
C-87

(Ceplecha 1987)

C-87 (v∞ = v0)
b

(Ceplecha 1987)

MT-15

(Dmitriev et al. 2015)

JS-19

(this work)

a (AU) 1.32381 1.30395 � 0.003 1.32000 � 0.003 1.32241 � 0.001 1.32265 � 0.003

e 0.25732 0.24589 � 0.002 0.25472 � 0.002 0.25646 � 0.0007 0.25654 � 0.002

i (°) 1.68383 1.64028 � 0.007 1.67009 � 0.007 1.68203 � 0.002 1.68367 � 0.007

x (°) 147.47773 147.96599 � 0.2 147.67417 � 0.2 147.48000 � 0.07 147.52451 � 0.2

Ω 82.46569 82.34476 � 0.001 82.34414 � 0.001 82.46687 � 0.0002 82.46664 � 0.002

Similarity criterionc N/A 0.01178 0.00269 0.00087 0.00082

The errors are determined assuming 10 m s�1 error on the initial velocity magnitude, as discussed in the Precision section.
aObtained through private communication with JAXA’s engineering team.
bThe pre-encounter velocity, v∞, uses the velocity calculated at first observed point (v0). See the Methods section for details.
cSouthworth and Hawkins (1963) similarity criterion as compared to the telemetry data.

1The orbits derived by fitting different numbers of initial data points

were analyzed and compared with similar results. For simplicity, only

one case is documented in this paper.
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atmospheric perturbation on the resulting orbital
predictions.

The initial inputs for this case originated from table
3 of Borovicka et al. (2011). The initial position
corresponds to the highest recorded sighting of the
capsule with timing, corresponding to 64.71 km. The
initial velocity vector is deduced from the first two given
position data points with timing. Note a straight line

least squares fit was not attempted here as the capsule
was already in a state of high deceleration. Also note that
the telemetry provided for the capsule is approximated as
we have not accounted for the small delta-v used in
capsule ejection 3 h prior to re-entry (Cassell et al. 2011).
Again, two cases of C-87 are assessed using different
initial velocity approaches. The comparison of orbital
results is shown in Table 2 and Fig. 4.

Fig. 2. A comparison between Hayabusa’s heliocentric orbit (as determined from telemetry) and the spacecraft orbit calculated using
Ceplecha’s analytical method (C-87), Dmitriev’s numerical method (MT-15), and the new numerical method outlined in this work (JS-
19), as projected on the plane of the ecliptic. The comparison also features the inner terrestrial planets as references. Included is an
enlarged view around the communal aphelion to emphasize the orbital discrepancies. Note the difference in CAM orbits using
different pre-atmospheric velocity assumptions (see the Methods section). (Color figure can be viewed at wileyonlinelibrary.com.)

Fig. 3. Selected perturbations over the Hayabusa’s orbit from the final correction maneuver (TCM4) until Earth rendezvous.
Note: the Earth’s J2 and atmospheric drag perturbations are considered negligible outside the Earth’s SOI at 924,000 km, and
above the exosphere at 10,000 km, respectively. (Color figure can be viewed at wileyonlinelibrary.com.)
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The drastic difference between the predicted orbits
of the Hayabusa capsule is primarily due to how the
atmosphere is considered by the various methods. This
orbital discrepancy really highlights the importance of a
well-modeled atmospheric perturbation influence in the
orbit determination algorithm, especially for those
objects initially observed at lower altitudes, such as
some meteorite dropping fireballs.

Atmospheric Influence

The significant difference between the determined
pre-Earth orbits of the Hayabusa capsule is due to the
handling of perturbations. The most dominant
perturbation in this case is the atmosphere. To assess the

altitude at which the atmospheric influence on the
orbit diminishes, we compared JS-19 (that accounts
for the atmosphere) to C-87 where v∞ = v0 (that
negates the atmosphere). The initial conditions for
these comparisons were determined using JS-19; that is,
the Hayabusa capsule was integrated back along its re-
entry path to a specified altitude at which point C-87
(v∞ = v0) was initiated alongside JS-19. The orbital
difference between these two orbit determination
methods from these initiation altitudes was then
determined using the Southworth and Hawkins (1963)
similarity criterion.

Figure 5 reveals a couple of interesting features about
the comparative nature of the two orbit determination
methods. First, the similarity is shown to converge to a

Table 2. The calculated heliocentric classical orbital elements for the Hayabusa capsule’s Earth rendezvous as
compared to the telemetric orbital data at T = 2010-06-09T06:04:00.0 UTC.

Heliocentric orbital
elements (ECLIPJ2000)

Telemetry
dataa

C-87
(Ceplecha 1987)

C-87 (v∞ = v0)
b

(Ceplecha 1987)
MT-15
(Dmitriev et al. 2015)

JS-19
(this work)

a (AU) 1.32381 1.38633 � 0.003 1.17873 � 0.003 1.36699 � 0.001 1.31322 � 0.003

e 0.25732 0.28928 � 0.002 0.16954 � 0.002 0.27995 � 0.0007 0.25160 � 0.002
i (°) 1.68383 1.75327 � 0.007 1.32041 � 0.007 1.73243 � 0.002 1.64657 � 0.007
x (°) 147.47773 150.05468 � 0.2 138.57245 � 0.2 149.13093 � 0.06 146.99422 � 0.2
Ω (°) 82.46569 82.34249 � 0.001 82.35312 � 0.001 82.44881 � 0.0002 82.47087 � 0.002

Similarity criterionc N/A 0.03413 0.09428 0.02394 0.00615

The errors are determined assuming a 10 m s�1 error on the initial velocity magnitude, as discussed in the Precision section.
aObtained through private communication with JAXA’s engineering team.
bThe pre-encounter velocity, v∞, uses the velocity calculated at first observed point (v0). See the Methods section for details.
cSouthworth and Hawkins (1963) similarity criterion as compared to the telemetry data.

Fig. 4. A comparison between Hayabusa’s orbit (as determined from telemetry) and the capsule’s orbit calculated by Ceplecha’s
analytical method (C-87), Dmitriev’s numerical method (MT-15), and the new numerical method outlined in this work (JS-19),
as projected on the plane of the ecliptic. Included is an enlarged view around the communal aphelion to emphasize the orbital
discrepancies. Note the difference in C-87 orbits using different pre-atmospheric velocity assumptions (see the Methods section).
(Color figure can be viewed at wileyonlinelibrary.com.)
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fixed value ~90 km altitude, indicating the atmospheric
influence on the orbit diminishes at this point. Many
meteorite dropping events are not observed before this
altitude, and are thus already experiencing significant
atmospheric drag. However, the object’s physical
characteristics, such as mass, shape, and density, would
directly influence the magnitude of this atmospheric
perturbation, and hence, this 90 km convergence altitude is
specific to the case of the Hayabusa capsule. Variation to
this altitude for other events requires further investigation.

Second, the apparent asymptote at high altitudes is
nonzero. This is due to the continuing effects of the
larger scale perturbations acting on the object, namely
the Earth flattening and third body effects. While the
magnitude of the Earth flattening perturbation drops
off relatively quickly, the third body perturbations
continue to influence the object’s orbit over the
duration of the integration.

Error Analysis

For the orbital results to be validated and properly
compared, their errors must be identified and
quantified. These errors originate from a variety of
sources, which can be factored into two groups—the
observational errors and the model errors.

The observational errors are simply the
uncertainties associated with the epoch time, the initial
triangulated position vector, and the initial determined
velocity vector before the orbital calculations begin.
While the epoch time and positional errors are merely
the uncertainties in the measurement data, the velocity
errors are not so straightforward. The directional errors
of the velocity are calculated by considering the
triangulated positional radiant data as a whole,
therefore minimizing the potential errors in the radiant
entry angle. The errors in velocity magnitude are
determined by referring to the velocity scatter at the

beginning of the object’s observable bright flight,
before the atmosphere presents a significant resistive
influence.

The model errors are the uncertainties introduced
within the orbit determination method itself, such as the
imperfect nature of the state equations in representing
meteoroid flight (small perturbations missed, etc.),
performing discrete time integration using the Dormand–
Prince integrator (bounded at 1 mm per time-step), and
the use of coordinate transforms.2 Despite model
uncertainties being small with respect to observational
errors, their inclusion must be considered for a robust
analysis. Combining all these uncertainties gives the
overall error, or precision, of the results.

Precision
The precision of the orbit determination methods is

primarily controlled by the error in the initial velocity
magnitude.3 The epoch time error, initial triangulated
position error, and the model errors combined cause an
orbital uncertainty three orders of magnitude smaller
than the initial velocity magnitude error alone. The
initial velocity directional error is somewhat more
influential on the resulting orbital errors, but still
between one and two orders of magnitude smaller than
the orbital uncertainty caused by the initial velocity
magnitude error.

No individual position errors were provided for the
triangulation results in the original paper (Borovicka
et al. 2011). In order to perform a general error analysis,
a velocity magnitude error of 10 m s�1 was assumed,
with error results given alongside the corresponding
orbital elements in Tables 1 and 2. Other velocity

Fig. 5. Orbital similarity between C-87 (v∞ = v0) and the new numerical approach at different initial altitude states, according to
the Southworth and Hawkins (1963) similarity criterion. (Color figure can be viewed at wileyonlinelibrary.com.)

2All coordinate transforms were performed using version 1.3 of

Python’s astropy module.
3Using typical errors calculated by atmospheric trajectory modeling.
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magnitude errors were considered and found to scale
roughly linearly to the resulting orbital errors; that is,
multiplying the velocity magnitude error by two causes
the orbit uncertainty to double.

The errors on JS-19 are calculated using a Monte Carlo
approach to handle the nonlinearity of the included
perturbations, where the error on the initial velocity
magnitude can be transformed into errors on the final
orbital elements. The reliability of these errors was
confirmed through repeated Monte Carlo trials each
consisting of 1000 particles. The error on the orbit
determined by C-87 was also calculated using a Monte
Carlo approach; however, the error determined by MT-15
uses a series of covariance transforms throughout the
algorithm. This covariance approach linearizes the error at
each step, and therefore does not account for any significant
nonlinear effects, such as a close encounter with the moon.

Tables 1 and 2 reveal that the orbital precisions of
C-87 and JS-19 only differ significantly in their longitude
of ascending node, Ω. This small discrepancy is due to C-
87 assuming that the meteoroid’s original (pre-perturbed)
Ω is simply the Earth’s heliocentric longitude at the time
of initial contact, which does not completely account for
the Earth’s gravitational influence on the meteoroid’s
trajectory. Clark and Wiegert (2011) suggest that “the
very tight uncertainties often reported for Ω are far too
aggressive, and should be minimally expanded to
incorporate this discrepancy.” This is clearly
demonstrated by comparing the true Ω to the analytically
and numerically determined Ω in Tables 1 and 2,
highlighting the imprecise assumption that C-87 employs.

Accuracy
While the precision describes the spread of orbital

results around the determined solution, the accuracy is a
measure of how close that solution comes to the true
orbit, or in our case, the orbit as determined using the
spacecraft’s navigational systems. This error can be
quantified by calculating the difference between the true
orbital elements and the determined orbital elements.
However, a more robust and encompassing measure of
the determination method’s accuracy is by employing
the similarity criterion (Southworth and Hawkins 1963).
As shown in Tables 1 and 2, the new numerical
approach consistently produces more accurate orbital
results. This comparison of accuracy has also been
demonstrated visually in Figs. 2 and 4.

Relative Similarity

A further assessment of similarity between C-87 and
JS-19 can be made beyond the single observed
Hayabusa re-entry using a variety of simulated re-entry
trajectories. We can generate simulated trajectories using

the Earth fixed re-entry radiant unit vector of the
Hayabusa satellite as the trajectory backbone. This is
then varied by artificially altering the velocity magnitude
and the time of re-entry. By modifying the re-entry time,
we are effectively adjusting the longitude of the re-entry
in an inertial frame due to the Earth’s diurnal rotation.
We vary the re-entry time through an entire day in
20 min increments, given in UTC time. At each of these
discrete time increments, the re-entry velocity magnitude
is also varied to cover all possible heliocentric orbits
conservatively, that is, from 10 up to 80 km s�1 in
250 m s�1 increments; any resulting hyperbolic orbits are
dismissed. On each of the 2088 simulated trajectories
within this data set, the orbit is computed once using C-
87 and once using JS-19. The similarities of the
determined heliocentric orbits are shown in Fig. 6.

The general shape of Fig. 6 is due to the Earth’s
velocity around the Sun. At about 15:00 UTC on June
13, 2010, the Earth’s velocity acts in the same direction as
the simulated Hayabusa re-entry, therefore reducing the
velocity needed to obtain a hyperbolic orbit relative to
Earth. Conversely, around 03:00 UTC, the simulated
velocity relative to Earth must be much higher to obtain a
hyperbolic orbit as the Earth’s velocity opposes the
simulated Hayabusa re-entry velocity. Additionally, the
minimum Earth centered velocity needed to obtain a
heliocentric orbit is the Earth’s escape velocity, regardless
of the Earth’s orientation around the Sun.

Interestingly, certain regions of orbital dissimilarity
can be identified by excluding particular perturbations
from JS-19. For example, by removing the Moon’s
gravitational perturbing influence, the orbit produced by
the numerical algorithm becomes more like the orbit
produced by C-87 in the area between 08:00 and 12:00
UTC (Fig. 7).

Other regions of orbital dissimilarity in Figs. 6 and
7 can also be identified. The darker region at lower re-
entry velocities is due to the resulting orbit being close
to that of the Earth’s orbit, and therefore experiencing a
greater time for the Earth/Moon perturbations to
influence the orbit off its Keplerian path. Additionally,
the roughly horizontal region at higher re-entry
velocities, around 05:00 UTC, corresponds to an area of
high orbital eccentricity (Fig. 8). As Jopek (1993)
describes, the values of the similarity criterion
(Southworth and Hawkins 1963) “strongly depend on
the orbit eccentricity when e > 0.9,” therefore
accounting for this region of apparent dissimilarity.

Also note, the isolated dots in Figs. 6 and 7 are single
orbital cases where the inclination is so close to zero that
the calculated longitude of ascending node, Ω, in one
orbital estimation is the longitude of descending node, ℧,
in the other. This results in a misdiagnosis of orbital
similarity.
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To give the reader an idea of these orbital
differences, if the velocity magnitude uncertainty was the
only acting source of orbit error, then 1, 10, 100 m s�1

uncertainties on initial velocity magnitude would
correspond to orbital similarities of 0.0002, 0.002, and
0.02, respectively. These correlations are specific to the
geometry of the Hayabusa trajectory and may vary for

different events, but serve well as a rough similarity
conversion for Figs. 6 and 7. That said, the similarity
range in Figs. 6 and 7 are capped at 0.001 to highlight
subtleties; however, some orbit comparisons, especially at
the low velocity end, did show similarities on the order
of 0.02, or roughly 100 m s�1 variation in initial velocity
magnitude—a significant difference in orbital terms.

Fig. 7. Orbital similarity (Southworth and Hawkins 1963) between Ceplecha’s analytical method (C-87) and the new numerical
method described in this paper (JS-19) having removed the Moon’s perturbation influence from the latter. Note the removal of
the lunar effect between 08:00 and 12:00 UTC from Fig. 6. (Color figure can be viewed at wileyonlinelibrary.com.)

Fig. 6. Orbital similarity between Ceplecha’s analytical method (C-87) and the new numerical method described in this paper (JS-
19) according to the Southworth and Hawkins (1963) similarity criterion. The darker the shade, the more difference there is between
the simulated orbits. Only the heliocentric orbits are shown; all hyperbolic and geocentric orbits are discarded. The sinusoidal-like
shape is due to the orbital velocity of the Earth around the Sun. The two distinctly darker areas at lower velocities represent strong
perturbations that are not considered in the C-87 model. (Color figure can be viewed at wileyonlinelibrary.com.)
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This analysis highlights differences in orbit
determination methods due to re-entry timing and
velocity magnitude, and even further differences may be
caused by variations in re-entry height, latitude, and
azimuth and zenith angles.

So, without the ability to include perturbations, C-87
cannot properly account for the complexities inherent in
the estimation of pre-Earth orbits. Any discrepancy from
the meteoroid’s “true” orbit will be magnified when a
probabilistic method, such as Bottke et al. (2002), is used
to determine its orbital origins, therefore making it
significantly harder to link meteoroids to their rightful
parent bodies or source regions.

CONCLUSIONS

Ceplecha’s analytical method of orbit
determination (C-87; Ceplecha 1987) is
computationally easy, and historically the most widely
used technique in determining the originating orbits of
meteoroids. However, it does not allow for
perturbations in orbit calculations such as third bodies
(including the Moon) or Earth flattening effects. A
numerical approach is able to incorporate such
perturbations. With increasing computational power,
such an approach is preferable.

A new numerical method (JS-19) is presented in this
study. To compare the results of this new orbital
determination technique to the typical analytical
method (C-87) and the numerical approach provided in
the Meteor Toolkit package (MT-15), the re-entry
observations of JAXA’s Hayabusa, with its known
heliocentric orbit as a “ground truth,” were invaluable.

As observations were made of both the spacecraft and
the capsule re-entry separately, these data provide two
excellent test cases with which models could be
compared to heliocentric telemetry. The spacecraft was
first observed at ~100 km altitude while the capsule was
not observed until ~65 km altitude. The low observation
altitude of the capsule tests the capability of models to
incorporate atmospheric influences. In both cases, JS-19
determined the most similar orbit to JAXA’s recorded
orbit than either C-87 or MT-15. This was especially
evident in the second case due to the greater
atmospheric influence that the capsule experienced
before initial sighting. Further investigation of the
atmospheric influence shows the need for atmospheric
consideration in meteoroid orbit determination below
~90 km altitude. This is therefore highly relevant for
many meteorite dropping events which may not be
initially observed above this height by fireball networks
tuned to brighter events. We also stressed that C-87
alone does not account for atmospheric drag effects,
requiring a pre-atmospheric initial velocity to be
determined prior to its use. The calculation of this
initial velocity by the majority of current fireball
networks that use C-87 is unclear and may need to be
revised.

We made a detailed assessment on the accuracy and
precision of orbital calculations. The numerical methods
are shown to produce more realistic precision and
deliver superior accuracy in estimating the Hayabusa
spacecraft’s pre-Earth orbit from re-entry observations
than the analytical method, verifying such claims of
previous authors (Clark and Wiegert 2011; Jenniskens
et al. 2011).

Fig. 8. The region of high eccentricity for the simulated data set of re-entry trajectories. (Color figure can be viewed at wile
yonlinelibrary.com.)
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The resulting orbital element precision is primarily
determined by the size of the initial velocity magnitude
error, as all other foreseeable uncertainties combined
correspond to orbital errors at least an order of
magnitude smaller than the initial speed uncertainty, as
discussed in the Precision section. While the precision of
the orbit determination methods were comparable, JS-
19 demonstrated greater accuracy due to its complete
detailed representation of Earth’s gravity and its
inclusion of perturbations, as discussed in the Accuracy
section.

By generating a great variety of simulated re-entry
trajectories, we were able to explore the effect of
different perturbations by comparing orbits calculated
by both C-87 and JS-19. Simulated trajectories with low
entry velocities or which pass close to the Moon show
the most drastic orbital divergences. This demonstrates
the vital need for perturbation inclusion within the orbit
determination method. The limitations of C-87 should
be considered and discussed if used for meteoroid orbit
determination. Previously determined orbits, especially
those in regions of significant orbital divergence (as
discussed in the Hayabusa’s Orbit Determined from the
Capsule’s Re-entry section) should be reanalyzed to
avoid inaccurate orbital histories.

The Hayabusa case used in this work has provided
a unique opportunity to compare orbit determination
techniques. Although this case assesses only a
heliocentric orbit, it must be noted that JS-19 can
compute an observed meteoroid’s orbit regardless of
whether it originated around the Earth (geocentric),
around the Sun (heliocentric), or from outside the solar
system (hyperbolic), proving itself to be a more robust
and real-world approach than its analytical counterpart.
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APPENDIX: INITIAL CONDITIONS

The initial conditions for our comparative analysis are determined using the tabulated values given in
Borovicka et al. (2011), but are collated in the table below. Note the quoted velocities are relative to the ground
(ECEF frame).

Spacecraft Capsule

Epoch time 2010-06-13T13:51.56.6 2010-06-13T13:52.16.0
Latitude (°) �29.0243 �29.6545

Longitude (°) 131.1056 133.0768
Height (km) 99.880 64.710
Initial velocity (m s�1) 11,725.1 11,330.5

Radiant azimuth (°) 290.5220 289.2733
Radiant elevation (°) 10.0173 8.7955
Mass (kg) 415 20
Cross-sectional area (m2)a 2.15 0.126

Corresponding radius (m) 0.827 0.2
Infinite velocity (m s�1)b 11,678.84 11,939.04
a Using a drag coefficient of 2.
b Using methods described in the appendix of Pecina and Ceplecha (1983).
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