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Abstract

Meteorites with known orbital origins are key to our understanding of solar system formation and the source of life
on Earth. Fireball networks have been developed globally in a unified effort to record and ultimately retrieve these
cosmic samples. However, the accuracy of the determined orbit and the likelihood of meteorite recovery depend
directly on the accuracy of the chosen meteoroid triangulation method. There are three leading techniques for
meteoroid triangulation discussed in the literature: the method of planes, the straight-line least-squares method, and
the multiparameter fit method. Here we describe an alternative method to meteoroid triangulation, called the
dynamic trajectory fit. This approach uses the meteoroid’s 3D dynamic equations of motion to fit a realistic
trajectory directly to multisensor line-of-sight observations. This method has the ability to resolve fragmentation
events, fit systematic observatory timing offsets, and determine mass estimates of the meteoroid along its
observable trajectory. Through a comprehensive Monte Carlo analysis of over 100,000 trajectory simulations, we
find this new method to more accurately estimate meteoroid trajectories of slow entry events (<25kms™ ') and
events observed from low convergence angles (<10°) compared to existing meteoroid triangulation techniques.
Additionally, we triangulate an observed fireball event with visible fragmentation using the various triangulation
methods to show that the proposed dynamic trajectory fit implementing fragmentation to best match the captured
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multisensor line-of-sight data.

Unified Astronomy Thesaurus concepts: Meteoroids (1040); Fireballs (538)

1. Introduction

Fireball networks have been around since the 1960s, with the
specific goal of observing meteors from multiple stations to
determine their past and future trajectories (Ceplecha 1961).
The meteoroids of real interest are the bright, deeply
penetrating kind, with the highest chance of surviving the
violent atmospheric entry process to produce meteorites.
Finding meteorites with known orbits is key for giving these
cosmic samples a regional context in the greater solar system,
potentially helping to answer some of the biggest questions in
planetary science, such as solar system formation and the origin
of life on Earth. However, these pristine samples of space
material are incredibly rare. As of mid-2019, only 36 out of
about 60,000 collected meteorites have known orbits, 5 of
which have been found in recent history by the Global Fireball
Observatory (GFO), a global collaboration of fireball networks,
including Australia’s Desert Fireball Network (DFN).

Successful recovery of the incoming meteorite requires
accurate knowledge of the fall position. If found, it is highly
desirable to have a well-constrained and accurate orbit
associated with the sample. Determining an orbit requires the
entry radiant and velocity of the meteoroid, while the
prediction of fall positions require dark-flight modeling, where
dark flight is the period of meteoroid freefall to Earth after
visible observations cease, during which the body is strongly
influenced by its size and shape, as well as atmospheric winds.
At the heart of all these dynamic analyses lies the triangulation
and modeling of the observed luminous trajectory, giving both
the dark flight and orbit determination their initial conditions.
To improve the accuracy of these predictions, we must first
improve the accuracy of our triangulation modeling techniques.

Three prominent methods of meteoroid triangulation have
been documented and used in the past: method of planes

(MOP; Ceplecha 1987), straight-line least squares (SLLS;
Borovicka 1990), and multiparameter fit (MPF; Gural 2012).
These three methods are outlined conceptually below. For more
details and mathematical rigor, please refer to their respective
papers.

A notable additional technique is the particle filter modeling
method of Sansom et al. (2019) as an alternative to the traditional
triangulation methods. While particle-type approaches are thor-
ough, they are also quite computationally intense and are not
feasible as the default triangulation method for large meteoroid
data sets. Instead, it is generally best suited to special cases when a
surviving meteorite is suspected.

1.1. Method of Planes (Ceplecha 1987)

Although the MOP is the oldest and least accurate of the
three prominent triangulation methods, it is very computation-
ally simple and often used for constructing the initial trajectory
guess for more complex methods, such as the SLLS and MPF
(see Sections 1.2 and 1.3). MOP comprises four main steps:
plane construction, radiant formation, position determination,
and velocity fitting.

To begin, MOP constructs a plane for every sensor. This
plane includes the sensor’s location and best fits to its
associated observation rays using a least-squares approach. It
does so by adjusting the plane normal to minimize the square of
the angular residuals between the rays and the plane.

Once the optimum plane is calculated for each sensor, they
are intersected in 3D space to determine the straight-line
trajectory. In the case where more than two sensors recorded
the meteoroid, a statistical weighting can be used to combine
the straight-line solutions from every different sensor-pair
combination to produce one unique straight-line trajectory.
This weighting is based on the convergence angle between the
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two planes as well as on the combined angular span of the
observed meteoroid across the sensors.

Positions along the determined straight-line trajectory are
found for every observation (regardless of time) as the closest
point on the trajectory line from that observed line of sight.
These 3D positions are generally calculated by the intersection
of the trajectory itself with a series of planes that each contain
an individual line of sight and its associated optimum plane
normal.

Lastly, the velocities are determined by fitting a model to the
positional lengths along the trajectory as a function of time.
These velocity models and fitting methods are described by
Pecina & Ceplecha (1983, 1984). However, it is interesting to
note that Pecina & Ceplecha (1983, 1984) state these equations
are “violated” for longer trajectories, indicating the simplicity
of their chosen velocity models.

1.2. Straight Line Least Squares (Borovicka 1990)

Only three years after MOP, the SLLS method was
published. Although Borovicka (1990) showed that the SLLS
method produced lower residuals than MOP, they concluded
that both methods produce similar results and could not
recommend one over the other, even suggesting a combination
of both may be preferable, depending on the case. That said,
Gural (2012) found the SLLS method to be more robust when
lower resolution cameras were used.

Unlike MOP, the SLLS method best fits a straight-line
trajectory directly to all the observed lines of sight at once. It
does so by minimizing the perpendicular distances between the
lines of sight and the straight-line trajectory itself. It was later
stated by Gural (2012) that a better alternative to the initially
published SLLS method was to minimize the angular distance
rather than the perpendicular distance. Using the angular
distance acts to indirectly weight the line-of-sight measure-
ments based on their observation range.

The positions are determined for every line of sight by
determining the closest point on the optimized straight-line
trajectory to that given line of sight (regardless of time). Similar
to MOP, the SLLS method requires a separate step to determine
the velocity along the trajectory. The methods of Pecina &
Ceplecha (1983, 1984) are used to determine this velocity by
considering the 1D lengths along the trajectory over time.

We must note that Borovicka (1990) offers the SLLS method
in both the Earth-centered/Earth-fixed (ECEF) frame and the
Earth-centered Inertial (ECI) frame; the main difference is
where the straight-line trajectory is defined. Performing the
SLLS method in the ECI frame implicitly includes the Coriolis
force but requires absolute timing knowledge to operate. It is
up to the user to determine which variation is more physically
realistic.

1.3. Multiparameter Fit (Gural 2012)

The previously discussed MOP and SLLS methods are
purely geometric triangulation solutions, i.e., the trajectory-
fitting component can be performed without any timing
information. It is only as a second step, when velocity analysis
is needed, that timing of the observed meteoroid is considered.
This means MOP and SLLS determine a unique position for
every line of sight; if there are simultaneous observations from
N sensors, there will be N unique positions along the trajectory
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corresponding to the same point in time. Only later, in the
velocity analysis step, can this potential scatter be dealt with.

The MPF technique of Gural (2012) differs from the
previous two triangulation methods in that it fits raw
observations directly to a trajectory solution, combining the
straight-line fitting and velocity modeling steps into one.
Hence, N simultaneous observations will now result in one
unique position along the trajectory. One implication of this
approach is that the convergence angle can now be thought of
as the angle between simultaneous lines of sight rather than
between planes, which is a significant distinction.

As the name suggests, the MPF algorithm best fits unknown
trajectory parameters to the measured lines of sight by
minimizing the angular distance between the said lines of
sight and the predicted lines of sight given their modeled
positions along a straight-line trajectory. These fitting para-
meters include the initial position (p,), the initial velocity (vp),
some deceleration coefficients depending on the chosen model
(a;), and sensor timing offsets (Aty), giving the MPF the ability
to handle asynchronous sensors assuming they all have relative
timing. Positions along the straight-line trajectory are deter-
mined using one of three velocity models: a constant velocity
along the track, a linearly decreasing velocity with time, or an
exponentially dependent deceleration (Jacchia et al. 1967).
However, these suggested velocity models do not physically
represent the trajectory dynamics. Gural (2012) suggests that this
technique is most applicable to smaller mass meteors (<5 g) of
short duration (<3 s), unless a better model is used.

2. New Approach—Dynamic Trajectory Fit (DTF)

Of the three most prevalent triangulation methods (as
discussed in Section 1), none claim to be able to fit long-
duration fireballs of significant mass, in part because all
methods have assumed a straight-line trajectory. While
Jenniskens (2006) claim that masses <50 g or equivalent
magnitude of —2 can be approximated using straight-line
trajectories, if the goal is to observe deeply penetrating fireballs
such as those targeted by the GFO, the fireballs are not
guaranteed to follow this straight-line assumption. In fact,
Sansom et al. (2019) show that the straight-line assumption is
an oversimplification that will affect orbit calculations and
meteorite search regions for a significant number of fireball
events.

The DTF method proposed here removes this straight-line
assumption by fitting differential equations of motion directly
to the measured lines of sight, thereby including all spatial/
temporal information in one step and ultimately providing a
more realistic account of the meteoroid’s fall trajectory. This
methodology takes the ideas of global fitting proposed in Gural
(2012) several steps further. The differential equations that
describe meteoroid fall dynamics and ablation following
Sansom et al. (2019) are’

dv CdAPaHVrel I
— = ———2 i + Aorav, (D)
a = gt
dm _ cnAp,m*" ||y | 2)
m

! Assuming that the meteoroid spins rapidly enough to cause uniform ablation

over its entire surface area, i.e., the shape change parameter u = 2/3
(Bronshten 1983).
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where v is the meteoroid’s absolute velocity in the ECI frame,
Vel 1S the meteoroid’s velocity relative to the atmosphere, m is
the meteoroid’s mass, @,y is the acceleration due to gravity,2
¢y is the drag coefficient, A is the shape-density parameter
(Bronshten 1983), p,, is the meteoroid’s density, p, is the
atmospheric air density,3 ¢, is the heat-transfer coefficient, and
H* is the enthalpy of sublimation.

However, not every unknown parameter from Equations (1)
and (2) can be resolved as many terms are dynamically coupled
and therefore indistinguishable given only the line-of-sight
measurements we obtain. Therefore, by assuming c,, A, and p,,
are constant throughout the luminous phase, we can alter these
equations by grouping the coupled terms together as shown:

dv Pall Vet ||

- = 7“7‘;“3 + Agray, 3

dt 2B 0 E ®
d_B _ _ 9 ”Vrel”3 (4)

dt 6

where B = {/mp?, [(cid) = m[(c;S) is the meteoroid’s
ballistic coefficient,* o = ¢, /(cqH™) is the meteoroid’s ablation
coefficient, vef = v — Wy 1S the meteoroid’s velocity relative
to the atmosphere, vy, = w, X p is the velocity of the
atmosphere, w, is Earth’s rotational angular velocity, p is the
meteoroid’s position in the ECI frame, and S is the meteoroid’s
cross-sectional area.

In addition to estimating the dynamic parameters (p and v),
by fitting the above differential equations to the measurements,
the DTF method can also estimate some physical parameters,
including the ballistic parameter, B, and ablation coefficient, o.
This fitted ballistic parameter, B, can be used to estimate the
meteoroid’s mass® during its observed descent through the
atmosphere—see Section 2.1 for details.

Although some fireball networks have submillisecond timing
precision on their shutter actuations within a long-exposure
image, such as those observatories within the GFO (Howie
et al. 2017b), the identification of the exact shutter breaks is
sometimes impossible due to haloing and/or saturation of the
fireball, causing the loss of all time information. Provided at
least one sensor has absolute timing for reference, the DTF
method is able to handle observations without timing
altogether. Additionally, the DTF method can resolve any
timing offsets between sensors, which is necessary for those
meteor and fireball networks that only record relative time
information.

One extra feature available as a consequence of the DTF
approach is the option to include fragmentation events, which
can be user diagnosed by large flares in the light curve. If
prompted, the DTF method can resolve both time and amount
of discrete fragmentation using the deceleration characteristics
of the meteoroid inherent in the observations.

2 Care must be taken in calculating the direction of Earth’s gravitation vector.
It should be perpendicular to Earth’s ellipsoid rather than toward Earth’s center
of mass—a subtle, but accumulative, difference.
3 The atmospheric density, p,, is calculated using the NRLMSISE-00
empirical atmospheric model (Picone et al. 2002).
* We refer to the ballistic coefficient as defined within the ballistics
community. We acknowledge that there is a separate dimensionless ballistic
coefficient, «, defined and used within the meteoritic community
(Gritsevich 2009).

Assuming the meteoroid’s drag coefficient, c,, shape, A, and density, p,,, are
constant throughout its luminous trajectory.
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2.1. Procedure

A mostly conceptual overview of the DTF methodology will
be presented here, containing sufficient detail and references to
ensure reproducibility. This conceptual overview is supple-
mented with a pseudocode representation of the algorithm to
visually demonstrate the overall structure and information flow
within the DTF method, shown in Figure 1. Additionally, all of
the associated Python source code files are publicly available
on the DFN’s GitHub page® for reference and /or use.

Computationally, the DTF algorithm is divided into three main
parts: state approximation, sanity checks, and optimization.

Part 1: State Approximation. In preparation for the main
optimization step (Part 3), we must estimate all the unknown
parameters for a single point in time that describe the
meteoroid’s dynamics; see Equations (3) and (4). The
collection of these parameters is termed the meteoroid’s “state”
and is given by the following vector:

Xefst - [pr9 pvf, pzfa vxfs v\yf, sz3 st

1
g, 6frag,i» tfrag,i» Atj, t]:e ]a (5)

where p/ = [p/, pyf , pzf ] is the final position, v/ =

z
coefficient, and o is the ablation coefficient. We use the end of

the observable trajectory in the state estimate as it is far easier
to constrain the ballistic coefficient, which relates to meteoroid
mass, to be greater than zero for all times along the observable
trajectory (B(f) > 0). These first eight parameters are always
required to define the trajectory. If one or more fragmentation
events are suspected, the percentage fragmentation, Ogag, and
the time of fragmentation, f,,, are added to the state for every
suspected fragmentation event. If any observatories are found
to contain timing offsets, an estimated offset time, A¢, is added
to the state for every offset observatory. Finally, if one or more
observatories contain lines of sight without relative times, an
estimated relative time, £, is added for every line of sight that
is missing timing information.

To calculate these estimates, we must first get an idea of the
trajectory from simpler triangulation methods. Using a boot-
strapping approach, we can build up from the MOP
(Ceplecha 1987) to the SLLS (Borovicka 1990), from which
we can then estimate most of the state parameters. The time
components are estimated first to ensure we calculate the
correct position, velocity, and ballistic coefficient parameters.

To determine if any observatories have a timing offset
problem, we start by assuming that all of the sensors are offset
and determine what Ar is needed to synchronize them. This
involves first designating a “master” observatory to act as a
temporal anchor, chosen as the observatory with the most lines
of sight with timing. Next, we adjust the estimated timing
offsets for every other observatory to minimize the differences
in lengths along the SLLS line when compared to the “master,”
interpolating if necessary. If the estimated offset is greater than
a given tolerance, say 0.05s, then the timing from that
observatory is used as relative timing only, and the estimated
offset is added to the state to be optimized.

[vxf, vyf s v/ ] is the final velocity, B’ is the final ballistic

S For online access to the source code of the DTF algorithm, please follow

this link: https://github.com/desertfireballnetwork /dtf_triangulation/.
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Part 1: State Approximation

All observation data:

, A
obs = {times, sensor Tl 0bS e guced
positions, azimuth, NS
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SLLS triangulation

(Borovicka et al., 1990)
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Figure 1. A pseudocode flowchart of the DTF algorithm divided into its three main parts: state approximation (red), sanity checks (yellow), and optimization (green).
The start and end of the algorithm are highlighted in blue, and all other inputs are highlighted in gray.
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Table 1
State Boundary Conditions Given to the Least-squares Algorithm to Ensure Realistic Results, where LB and UB Stand for Lower Bound and Upper Bound,
Respectively
State p/ v B o Strag lirag At, 1
Parameters (km) (kms™") (kg m™?) (kgI™h (%) (s) (s)
LB * - 40 -5 107"° 3%x107° 0 fnin *—10
UB * 440 45 10* 3x107° 100 fnax Y410

Note. Also, the star symbol represents the associated estimated state parameter as determined in Part 1.

All of the lines of sight without timing are then very roughly
estimated by comparing their lengths along the SLLS line to a
modeled length/time function. This function is constructed by
fitting a trajectory of constant velocity to the SLLS lengths
along the line over time. All timeless lines of sight have their
along-track lengths converted to relative timing, 7', and are
subsequently added to the state estimate to be optimized. After
optimization, these lines of sight each produce a zero along-
track error, as expected.

Now, using the rough timing corrections above, we are able to
more accurately estimate the meteoroid’s final position and velocity
from the SLLS fit. Put simply, the estimated position is merely the
final triangulated point along the SLLS line, and the estimated
velocity is a least-squares average velocity of the last eight SLLS
triangulated positions. The ablation coefficient, o, is initially
estimated as 14 x 10 sszz in all cases (Sansom et al. 2015).
The ballistic coefficient, B’, is roughly determined by adjusting it to
equate the SLLS trajectory length with the propagated trajectory
length using the meteoroid’s dynamic equations of motion—
Equations (3) and (4). This is achieved using Brent’s root-finding
method on the range log,(B/) € [1, 4], which approximately
equates to a meteoroid mass range of 0.1 g-100ton sphere of
chondritic density (3500 kg m ).

If any fragmentation is suspected by the user, one or more
fragmentation times are able to be input to the algorithm and serve
as the fg,, parameter in the state estimate. The fragmentation
percent, Op,, is always estimated initially as 30% and adjusted
upon optimization.

We must note that these estimates’ sole purpose is to start the
optimization sufficiently close to the global minimum to allow
convergence. Once the minimization algorithm begins, the
measurements are the only things directly influencing the
trajectory solution; it is not building off already processed data.

Part 2: Sanity Checks. As some fireball data reduction
pipelines can be almost completely automated, such as those of
the GFO, there is a chance sensor data are corrupt or have been
incorrectly grouped. This could occur for a variety of reasons,
including calibration errors, planes and/or satellites being
misidentified as meteoroids, or the rare cases where multiple
simultaneous fireballs are incorrectly correlated across sensors.

To avoid triangulation errors within the optimization routine,
a variety of sanity checks need to be performed to remove
erroneous data before optimization is attempted. All of the
following checks use the rough triangulation of SLLS and the
state approximation (as determined in Part 1) to ensure that
each observatory’s triangulated observations:

1. Decrease in height over time.

2. Change in height at roughly the same rate.

3. Produce sufficiently low SLLS residuals.

4. Triangulate to positions above the ground.

5. Triangulate to positions less than 200 km altitude.

6. Produce a final estimate less than

: state velocity
200 kms™ .

These conditions are designed to be quite extreme to prevent
accidentally discarding any valid data that have happened to
triangulate poorly using the SLLS procedure. If any data are
found inaccurate, the first sensor to fail a condition above is
eliminated, and the procedure begins over from the state
approximation (Part 1).

Part 3: Optimization. Now that we have an initial state
estimate (Part 1) using good data (Part 2), we are in a position
to begin the trajectory optimization. This step could be
performed with any robust minimization routine that imposes
bounds on the optimized state to ensure realistic results. For
reliability, we have elected to use SciPy’s built-in least-squares
function, which has been thoroughly tried and tested (Virtanen
et al. 2020). Within this function, the trust region reflective
(TRF) method is chosen as it is robust and permits bounds to be
set on the allowable state. We define rather generous state
bounds to give the optimization routine enough room to
effectively search the state space while at the same time
keeping the resulting state physically realistic; see Table 1.

The chosen TRF method also offers the option for user-defined
Jacobian and state step size. For accuracy and computational
speed, we provide a parallelized custom Jacobian function that
utilizes a central differencing routine. The step size is defined equal
to the change in state used in the Jacobian’s central differencing
algorithm to avoid state divergence by overshooting the bounds of
Jacobian linearity.

Once the least-squares algorithm is set up and initiated, the
state is propagated to all other observation times using
Equations (3) and (4) combined with an ordinary differential
equation solver, such as SciPy’s odeint function (Virtanen et al.
2020). These observation times are possibly adjusted by an
offset, At;, or completely generated, 1, using the parameters
within the current state estimate (Equation (5)). Also, if any
fragmentation parameters exist within the to-be-optimized state
(Equation (5)), the state propagation procedure is interrupted at
these specified fragmentation times, s, ;, to discretely change
the meteoroid’s mass by a specified percentage, 6y, ;, While
keeping all other state parameters the same to ensure trajectory
continuity.

The positions within the set of propagated states are
subsequently converted to lines of sight given the various
observatory’s locations and times. These predicted lines of
sight are differenced from the observed lines of sight to give the
angular along-track and cross-track residual components. With
the help of the Jacobian to show the direction of the local (and
hopefully global) minimum, the state parameters are adjusted to
minimize these angular residuals, weighted by their individual
astrometric uncertainties. This procedure occurs iteratively
until the state does not differ significantly enough from one
iteration to the next, therefore signifying that a minimum is
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reached and the resulting state matches the observations as
closely as possible.

Now that the optimized state solution is obtained, the state
errors are determined (as discussed in Section 2.2) and
propagated to all of the other observation times alongside the
state itself before being saved to file for subsequent orbit
determination and possible dark-flight analysis. Various plots
are then constructed using these data; see Section 3.2.

2.2. Notes on Errors

We must note that the least-squares algorithm used within
the DTF method does not produce errors. Instead, covariance
errors can be estimated afterward from both the Jacobian of the
optimized state and the covariance on the line-of-sight
measurements as follows (Bevington et al. 1993):

res

XCOV = Xcov + Xiov’ (6)
Xeow = (dx/dres)" diag(res?)(dx/dres), 7

x° = (dx/dres)" (dres/dz)  zcoy

cov

X (dres/dz)(dx/dres), ®)

dx/dres = (JJT)"J7, 9)

where J is the state Jacobian matrix, describing how the
residuals change with a change in state; dx /dres is the inverse
of the Jacobian, describing how the state changes with a change
in residuals; dres /dz is a coordinate transform, describing how
the residuals (along-track/cross-track) change with a change in
line-of-sight measurements (R.A./decl.); z.oy is the covariance
on the measurements; and diag(res?) is the residual vector at
the optimized state, diagonalized.

As shown in Equation (6), we are able to incorporate
the residual covariance due to the spread in residuals around
the model, X, and measurement covariance due to the
astrometric uncertainty, Xi o+ into an overall covariance
estimate. Separate testing showed that the measurement
covariance component accurately reflected the covariance of
the state through repeated Monte Carlo analyses in which the
measurements were varied within their astrometric covariance
space.

However, we must also note that the uncertainty formulation
discussed above does not account for errors arising due to the
meteoroid equations of motion as well as assumptions made
within this model (Equations (3) and (4)), such as a constant
ablation coefficient, shape, and density of the meteoroid
throughout the visible trajectory. Therefore, the determined
covariance from Equation (6) can be viewed as minimum
uncertainties given the observations.

3. Results and Discussion

To demonstrate and compare the capabilities of the four
previously discussed triangulation methods, we conduct two
independent comparative analyses: the first study uses over
100,000 randomly simulated trajectories, comparing the fitted
initial velocity vector to the simulated “truth.” The second study
uses a real fireball event, captured by multiple observatories within
the DFN.
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3.1. Randomized Simulations

To fully analyze the accuracy of a triangulation algorithm
through the full range of possible trajectory conditions, one
must rely on simulations. Simulations allow us to compare a
triangulation solution against the unaltered trajectory “truth.”
For the following comparative analysis, a fireball simulator was
designed, built, and heavily tested under a variety of initial
conditions before being used to compare the various triangula-
tion methods.

This fireball simulator begins with a set of randomized
physical and dynamical initial conditions at the top of the
atmosphere, completely defining a meteoroid’s state at that
point. This randomized state is then numerically propagated
forward in time using the meteoroid’s 3D differential equations
of motion until the meteoroid’s speed relative to the ground
falls below 2kms ' or it completely ablates (B — 0),
whichever occurs first. Likewise, the initial meteoroid’s state
is also propagated back in time until the meteoroid’s height
exceeds 200 km. These propagation bounds are chosen to
confidently cover the meteoroid’s luminous phase of its
trajectory.

Once this extended simulated trajectory has been established,
perfect azimuth and elevation measurements are generated
every 0.1s for two randomized observatory locations. These
simulated measurements are then uniquely pruned for each
sensor depending on their calculated visibility—i.e., while the
meteoroid is more than 10° above the horizon and ablating
rapidly enough to be detectable from each observatory’s
perspective (Ceplecha et al. 1996; Sansom et al. 2019). The
resulting measurements are then varied within some rando-
mized Gaussian measurement error to better reflect reality.’

The initial state of these simulated trajectories was generated
with a fixed latitude of 0°, a fixed longitude of 0°, a fixed height
of 100 km, a uniformly random slope between 10° and 90°
from local horizontal (avoids potential skipping events), a
uniformly random bearing between 0° and 360°, and a
uniformly random speed between 12 and 72 kms ™" (produces
only heliocentric orbits). Additionally, the meteoroid was
initialized with a fixed density of 3500 kg m ™ (rough ordinary
chondrite meteorite density), a fixed spherical shape, a fixed
ablation coefficient of 10~ ®kgJ~" (using Table 2 of Sansom
et al. 2015 as a guide), and a uniformly random mass in log
space between 100 g and 100 kg (typical fireball events). Two
uniformly random observatory locations that could view the
center of the observable trajectory at an elevation greater than
20° were generated. This did not always generate geometrically
favorable observation combinations.

The simulated line-of-sight observations were given a
measurement error of 2’4, characteristic of the measurement
errors given by a DFN observatory (Howie et al. 2017a). Gural
(2012) found that the resulting radiant error was proportional to
the measurement error, and therefore, any results found through
this analysis can be linearly extrapolated to imaging systems of
higher or lower resolution.

In this analysis, we generated 123,337 sets of realistic
double-station measurements from random trajectories using
the fireball simulator. Each measurement set was subsequently
passed to the four triangulation methods for trajectory fitting:

" This trajectory can also be affected by multiple randomized or user-defined
fragmentation events, and/or systematic observatory timing offsets to increase
realism; however, these abilities are not used in this analysis.
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Figure 2. The median absolute differences between the simulated and fitted

radiant at the top of the meteoroid’s trajectory by varying the observation
convergence angle.

the MOP, the SLLS method, the MPF® method, and the novel
DTF method. The original simulated radiant velocity vector
and the four fitted radiant velocity vectors from the top of the
trajectory are then compared, distinguishing the differences in
slope, bearing, and velocity magnitude components.

Similar to the analysis performed by Gural (2012), the
difference between the true and estimated radiant parameters
are statistically analyzed by considering its median value
within small, equally divided bins that subtend the x-axis. This
avoids excess clutter and highlights the general trends of the
various triangulation methods.

Using the approach described above, we can compare the
fitting errors against different meteoroid trajectory parameters,
such as the observation convergence angle, initial speed,
trajectory duration, and trajectory length as shown in
Figures 2-5, respectively.

From these simulation results, we notice that all triangulation
methods generally agree and tend to follow the same trends—
especially between the MOP and SLLS approaches. Areas with the
most model inaccuracy arise when a meteoroid trajectory is viewed
from observatories of low convergence angle, is short in length, or
displays a relatively slow entry velocity. Interestingly, these are the

8 Gural (2012, p. 1411) states that “the algorithm is not ill-conditioned to

having too many velocity fitting parameters as long as there is measurement
sample support.” Therefore, we have chosen to use the exponentially
dependent deceleration model specified in Equation (4) of Gural (2012) for
MPF analysis within this paper.
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regions that the DTF method either matches or exceeds in accuracy
when compared to the alternative triangulation methods. In
particular, the DTF provides a more accurate trajectory solution
at low convergence angles (<10°), slow to moderate entry
velocities (<25kms "), and extremely fast entry velocities
(>65kms ).

Regions where the DTF method appears to perform poorly
could be due to the underlying least-squares algorithm either
reaching a nonglobal minimum or simply terminating optim-
ization procedures too early. Regardless, the estimated errors
calculated as part of the DTF procedure (Section 2.2) are on the
same order as the median absolute deviations shown from these
simulations. This indicates that the true meteoroid trajectory is
accurately encompassed within the DTF errors, which is the
ultimate goal of meteoroid trajectory modeling.

It is also interesting to note that in most trajectory scenarios,
the modeled velocity error is on the order of 0.1kms .
However, as stated before in Gural (2012), the magnitude of
this model error is directly proportional to the uncertainty in the
line-of-sight observations. Therefore, we can conclude that
meteoroid events with observation errors less than the 2’4
simulated here should result in a velocity accuracy better than
~0.1 km s~ '—the threshold needed for accurate identification
of meteoroid source regions within the solar system (Granvik &
Brown 2018).

Although extensive simulations of meteoroid trajectories
observed through two sensors were used to statistically analyze
and compare the different triangulation methods, analysis of
meteoroid trajectories observed by more than two sensors was
not explored here. It would be insightful, however, to perform a
similar statistical analysis on cases with three or more sensors.
In general, trajectory results from all triangulation methods
would improve in accuracy given additional sensor data—not
just due to an increase in data density, but also due to the
additional triangulation information an extra sensor can
provide. To what degree is yet to be shown and will be the
subject of future work.

3.2. Case Study: Fragmentation Event (DN141125_01)

Simulations are a way to thoroughly investigate and compare
various models to an estimated reality. However, no simulation
can 100% replicate reality. It is for this reason that we analyze
and compare the various meteoroid triangulation methods using
a real-world example. We choose an event with visible signs of
fragmentation to highlight the fragmentation handling within
the DTF method, as shown in Figure 6.

This fireball event with visible fragmentation, referred to as
DN141125_01, was captured by five DFEN observatories—two
of which could not be resolved for timing due to the distance of
the observations. Although the DTF method can incorporate
data with this lack of timing information, we chose to discard
the data from these observatories for triangulation comparison
purposes. The DN14125_01 event was visible for 9.24s,
comprising 459 line-of-sight observations at a maximum
convergence angle of 35°. The triangulation for event
DN141125_01 is shown visually in Figure 7 and is
summarized in Table 2.

To determine which triangulation model best fits the line-of-
sight observations, we compare the residual magnitudes as
stated in Table 2 and shown more thoroughly in Figure 8.
Unsurprisingly, the residuals in the cross-track direction are
smallest using the SLLS method as this is its optimization



THE ASTRONOMICAL JOURNAL, 160:190 (11pp), 2020 October

100.
_ —e— MOP
= —— SLLS
g —s— MPF
£ 101
w
]
Q
o
n
10724 j i ! i j i
10 20 30 40 50 60 70
100,
o
]
=
S
i
(=]
E
—_
(18
]
[aa]
10_2- T T T T T T T
10 20 30 40 50 60 70
103‘
v
E
S
II 102.
z
S
=]
o
>
1014 j i j i j ]
10 20 30 40 50 60 70

Initial Speed [km/s]

Figure 3. The median absolute differences between the simulated and fitted
radiant at the top of the meteoroid’s trajectory by varying the initial speed.

parameter. However, the DTFg,, model possesses the smallest
total residuals.

The velocities determined by the various triangulation methods
rely on different models, each containing unique assumptions.
The velocity determination algorithm used within the MOP and
SLLS methods fits the 1D meteoroid equations of motion to the
lengths along the 1D trajectory, assuming an exponential
atmosphere (Pecina & Ceplecha 1983). The velocity calculated
by the MPF method uses a purely empirical formula (Whipple &
Jacchia 1957; Gural 2012). Lastly, the velocity results from the
DTF method consults the meteoroid’s 3D equations of motion
directly, without any simplifying straight-line or atmospheric
assumptions. The subtleties between these velocity models using
data from event DN141125_01 are compared in Figure 9.

As shown in Table 2 and Figure 9, the final velocity predicted
by the MPF method does not appear to follow the instantaneous
velocity scatter, suggesting the exponentially dependent velocity
model does not reflect reality for long fireball-type events.
Excluding the MPF velocity, the remaining velocity models seem
very similar, varying b]y about 300ms ' at the extremities.
However, this 300 m s~ variation would still lead to consider-
ably different dark-flight and orbit regression results.

As discussed in Section 2, the DTF method is able to resolve
the meteoroid’s ballistic coefficient over time, B(f). By assuming
a constant meteoroid shape and density, we can estimate the
meteoroid’s mass throughout the observed luminous trajectory
directly using the line-of-sight observations—unlike any other
compared triangulation method. This feature not only helps

Jansen-Sturgeon et al.

101 4

100.

Slope Error [deg]

00 25 50 75 10.0 125 150 17.5 20.0

10—1 4

Bearing Error [deg]

Sl xwgﬂahw*"m

00 25 50 7.5 100 125 150 17.5 20.0

102‘

104 ; ] ; ] ] ,
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Trajectory Duration [s]

Figure 4. The median absolute differences between the simulated and fitted
radiant at the top of the meteoroid’s trajectory by varying the trajectory
duration, where duration is roughly proportional to the number of collected
observations.

diagnose meteorite-dropping events but assists greatly in
constraining the meteorite search area. The mass estimates for
event DN141125_01 using the DTF and DTFg,, methods are
compared in Figure 10. The DTFg,, method predicts the
meteoroid from DN141125_01 broke up around 5.3s, at an
altitude of 47.3 km——consistent with the visible fragmentation
shown in Figure 6.

To summarize this comparison of triangulation methods, the
DTF with fragmentation handling (DTFs,,) appears to be the
best model for event DN141125_01. While there may be
events that are better suited to the other triangulation methods,
the simulations discussed in Section 3.1 show that the DTF
method is an equal if not better choice for most events.
Additionally, the DTF method can estimate the mass of the
meteoroid from the line-of-sight observations directly, as
discussed in Sections 1.1-1.3.

4. Future Functionality

While the proposed DTF method appears successful in its
current form and poses considerable merit, there are a few
improvements that could be applied to increase realism and
draw out additional subtleties within the gathered data. These
improvements include:

Remove model assumptions. In the derivation of the meteor-
oid’s equations of motion (Equations (3) and (4)), the meteoroid
is assumed to be spinning rapidly enough to uniformly ablate
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Figure 6. The captured long-exposure image of event DN141125_01 taken
from the Mulgathing station within the Desert Fireball Network, showing
visible signs of fragmentation toward the end of the luminous trajectory.

over its surface (u = 2/3) and have a constant drag coefficient,
shape, and density throughout the luminous portion of its
trajectory. While Bouquet et al. (2014) show these assumptions
are reasonable and often used in meteor physics, removing as
many of them as possible would lead to a more realistic
meteoroid model, and therefore more accurate meteoroid orbit
and impact location predictions.

Light-curve incorporation. With the inclusion of light-curve
data, we would have the opportunity to better model meteoroid
mass loss along the trajectory, which would act to further
constrain the meteoroid state and its associated uncertainty.
Luminous efficiency models, such as that by Gritsevich &
Koschny (2011), might be relatively easily incorporated into
the state propagation of the meteoroid to better estimate its
physical and dynamical parameters.

Jansen-Sturgeon et al.

Figure 7. The triangulation of event DN141125_01 using a total of 459 line-of-
sight measurements from three South Australian observatories within the
Desert Fireball Network: Mulgathing, Northwell, and Mount Ives.

Table 2
Summary of Event DN141125_01 Trajectory Parameters Using the Four
Triangulation Methods Discussed in This Paper: The Method of Planes (MOP),
the Straight-line Least Squares (SLLS), the Multiparameter Fit (MPF), and the
Dynamic Trajectory Fit (DTF)

MOP SLLS MPF DTF

Along-track residuals (') 8.700 4.099 6.385 2.543 2.332
Cross-track residuals (') 2.427 0.861 2.314 3.392 3411
Total residuals (') 9.033 4.188 6.792 4.240 4.132

DTFrog

345245 345.089 345.088 345.014 345.010
—46.351 —46.655 —46.663 —46.333 —46.311

RA. (®
Decl. (°)

—31.593 —31.600 —31.600 —31.593 —31.592
133770  133.767 133.765 133.768 133.769

Latitude, (°)
Longitude, (°)

Height, (km) 80441 80752 80.815 80.285  80.189
Velocityo (km's ™) 13977 14095 14381 13989  13.908
Slopeg (°) 27247 27238 27236 27.091 27.082
Azimuthg (°) 49.004  48.656 48.656 48962 48977
Mass, (kg) N/A  N/A  NJ/A 0901  1.605
Latitude, (°) —31.011 —31.011 —31.012 —31.010 —31.010
Longitude; (°) 134545 134.541 134.538 134.539 134.540
Height, (km) 30456 30.627 30732 30.543  30.521
Velocity, (km s ") 4711 4954 3041 4738 43892
Slopey (°) 26368 26353 26352 26484 26476
Azimuth, (°) 48602 48253 48254 48178  48.194
Mass; (kg) N/A N/A  N/A 0081  0.113

Note. In addition, the triangulation solution of the dynamic trajectory fit with
fragmentation (DTFy,,) was also given to highlight this added fitting feature.
The results are divided into four sections; the standard deviations of the
trajectory residuals to indicate the goodness of fit, the radiant direction for
possible meteor stream classification, the initial trajectory position and velocity
at 15:21:15.386 UTC used for orbit determination, and the final trajectory
position and velocity at 15:21:24.626 UTC used for dark-flight analysis.
DN141125_01 had a maximum observed convergence angle of 35°.

Automated fragmentation determination. Currently, we rely
on a user-defined time of fragmentation. However, with full
light-curve history, we should be able to flag fragmentation
events from light-curve peaks alone, therefore negating any
user-required input to the algorithm. However, this function-
ality could easily be integrated upstream in a larger data
reduction pipeline using measurements from highly sensitive
radiometers (Buchan et al. 2019), not necessarily integrated
into the triangulation method itself.
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Meteoroid spin modeling. For some particularly long fire-
balls, such as Case 1 of Sansom et al. (2019), trajectories
appear to considerably deviate from the fall plane, suggesting
there are unaccounted aerodynamic effects. We hypothesize
this might be in part due to the Magnus effect at high velocities,
that is, the resulting curvature of an object’s trajectory due to its
spin. It would be very interesting to model these cases with
meteoroid spin considered. The proposed DTF method would
simply require an additional three state parameters to model
this phenomenon, namely the angular velocity vector,
Wepin = [wy, wy, w]. It would be conceivable to extend the
DTF method to optimize without spin, only reoptimizing with
spin if the measurements did not adequately match the model
(reduced chi-squared X2 = 1).

Global triangulation solution. Until alterations to the DTF
algorithm are made to avoid some of the discussed inaccuracies
(see Section 3.1), the alternative triangulation methods could be
utilized under certain trajectory conditions—for example, using
SLLS/MPF methods for those meteoroid cases with deter-
mined velocities between 25 and 65 kms™'. Alternatively, one
could even perform all triangulation methods on the same event
and combine their results with various weights depending on
the meteoroid’s determined traits, such as speed and conv-
ergence angle.

5. Conclusions

Meteoroid orbits and meteorite samples provide invaluable
information that helps planetary scientists investigate solar
system formation and the origin of life on Earth. Fireball
networks around the globe are on the forefront of providing this
knowledge. However, the accuracy of the determined orbit and
the chance of meteorite recovery both rely heavily on the
accuracy of the underlying meteoroid triangulation method.

Three triangulation methods have been proposed in the past:
the MOP (Ceplecha 1987), the SLLS method (Borovicka 1990),
and the MPF (Gural 2012). The first two listed methods above
separate out the geometric fit from the dynamic modeling. In
2012, Gural simplified this procedure to a single step, changing
the well-known convergence angle from that between planes to
that between simultaneous rays—a clear advantage over the
past traditional triangulation methods. However, the velocity
models suggested within Gural (2012) are empirically derived
for small meteors and do not reflect reality, particularly for
meteorite-dropping events. The proposed novel DTF method
not only contains a more realistic dynamic model, but it
possesses the ability to determine the meteoroid’s ballistic
coefficient throughout the observable trajectory directly from
the line-of-sight measurements, unlike any other proposed
triangulation method. With meteoroid shape and density
assumptions, this ballistic coefficient can be easily translated
into meteoroid mass.

Over 100,000 multistation meteoroid simulations revealed
the advantage of the DTF method particularly for relatively
slow entry events (<25 km s~ ') as well as events observed
from low convergence angles (<10°). Additionally, a visibly
fragmenting fireball event captured by three stations of the
DFN was used to compare the four triangulation methods. The
DTF with fragmentation was shown to best match the
observations, with the predicted fragmentation time in agree-
ment with the observed data.
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The method proposed here could be easily modified to fit
arbitrarily complex equations of motion, to include light-curve
data, and to provide automated fragmentation detection in the
future.
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