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A B S T R A C T

Meteoroid modelling of fireball data typically uses a one dimensional model along a straight line triangulated trajectory. The assumption of a straight line trajectory
has been considered an acceptable simplification for fireballs, but it has not been rigorously tested. The unique capability of the Desert Fireball Network (DFN) to
triangulate discrete observation times gives the opportunity to investigate the deviation of a meteoroid’s position to different model fits. Here we assess the viability
of a straight line assumption for fireball data in two meteorite-dropping test cases observed by the Desert Fireball Network (DFN) in Australia – one over 21 s
(DN151212_03), one under 5 seconds (DN160410_03). We show that a straight line is not valid for these two meteorite dropping events and propose a three
dimensional particle filter to model meteoroid positions without any straight line constraints. The single body equations in three dimensions, along with the
luminosity equation, are applied to the particle filter methodology described by Sansom et al. (2017). Modelling fireball camera network data in three dimensions has
not previously been attempted. This allows the raw astrometric, line-of-sight observations to be incorporated directly. In analysing these two DFN events, the
triangulated positions based on a straight line assumption result in the modelled meteoroid positions diverging up to 3.09 km from the calculated observed point (for
DN151212_03). Even for the more typical fireball event, DN160410_03, we see a divergence of up to 360 m. As DFN observations are typically precise to < 100 m, it
is apparent that the assumption of a straight line is an oversimplification that will affect orbit calculations and meteorite search regions for a significant fraction of
events.

1. Introduction

When meteoroids pass through the Earth’s atmosphere the luminous
phenomena produced can be characterised by its brightness, increasing
from meteor to fireball to bolide (Ceplecha et al., 1998). Meteors are
typically associated with cometary dust and burn up high in the at-
mosphere. Fireballs tend to be slower than meteors and more likely of
asteroidal origin. These lower entry velocities allow meteoroids to pe-
netrate deeper into the atmosphere, with longer trajectories likely to be
influenced by its increasing density. Fireballs are particularly sig-
nificant as they are frequent enough for dedicated camera networks to
capture regularly, whilst still having the potential for objects to survive
entry and drop meteorites to Earth. Modelling of fireball trajectories for
orbit analysis and meteorite recovery is typically based on a straight
line assumption (McCrosky and Boeschenstein, 1965; Spurný et al.,
2012; Brown et al., 1994; Hildebrand et al., 2006). The synchronised
astrometric observations acquired by the Desert Fireball Network (DFN;
Howie et al. 2017) provide a unique opportunity to test this assump-
tion. This work analyses two fireball test cases and introduces a 3D
particle filter modelling technique that uses raw observational data to

estimate a trajectory without the need for pre-triangulated data. Al-
though DFN data are used, they are simply to illustrate the issues sur-
rounding the straight line assumption and the functionality of the 3D
particle filter technique presented.

1.1. Modelling and observing fireball trajectories

Determining the potential of a fireball to produce a meteorite in-
volves a trajectory analysis of each individual event. The meteoroid can
be modelled based on the single body theory of meteoroid dynamics – a
set of continuous differential equations representing the evolution of a
meteoroid’s behaviour as it passes through the atmosphere (Hoppe,
1937; Baldwin and Sheaffer, 1971; Sansom et al., 2017). This is, how-
ever, a simplified theory and does not explicitly include any disruptions
to the body. Furthermore, many of the trajectory parameters are un-
known and assumptions must be made, or models used, to determine
their values.

Models such as those used by Ceplecha and Revelle (2005) and
Kikwaya et al. (2011) apply a least squares methodology to determine
the characteristics of a meteoroid during its flight based on positional
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observations and light curves. A least squares approach however does
not rigorously examine the uncertainties in observations, or the lim-
itations posed by the single body model applied, when evaluating er-
rors. Typically the observational residuals to a straight line fit are
quoted as positional uncertainties for the trajectory. This is not valid as
the errors induced by using any model must be incorporated.

Even though meteor ablation models (Campbell-Brown and
Koschny, 2004; Kikwaya et al., 2011) expand on the single body
equations for ablation by including thermal fragmentation mechanisms,
their application is limited to small meteor-producing bodies
( ×10 to 4 10 kg12 5 / 10 μm to 2mm ; Campbell-Brown and Koschny
2004).

Hydrodynamic numerical models (such as SOVA (Shuvalov, 1999)
and the model of Shuvalov and Artemieva 2002) focus on external
processes for modelling the interaction and propagation of shock waves
through the atmosphere caused by hypersonic flight of bolides
(Artemieva and Shuvalov, 2016). These models do not use raw ob-
servational data and are computationally expensive procedures
(Artemieva and Pierazzo, 2009). For this reason a pragmatic approach,
such as the particle filter technique used by Sansom et al. (2017) (after
Ristic et al. 2004), is favoured to characterise meteoroid atmospheric
entry of large fireball network data sets.

The Monte Carlo technique of Sansom et al. (2017) iteratively es-
timates the state of the trajectory system at each observation time. It
does not aim to fit the entire trajectory at once. This removes the as-
sumptions and limitations of normal fitting techniques that may force
the simplified single body equations to model this more complex
system. Despite the particle filter using these equations as a base model,
the adaptive approach uses the observations and appropriate covar-
iances to incorporate, to some extent, unmodelled processes (such as
fragmentation). The nature of this technique allows a broad range of
trajectory parameters (including densities, shapes and ablation para-
meters) to be explored, and favourable values to be identified, in a more
robust way than a brute force least squares approach.

Beside modelling a meteoroid’s dynamic trajectory, it is possible to
relate the mass loss of the body along the trajectory to the observed
brightness of the event, as a portion of the kinetic energy loss is
transformed into visible light (Ceplecha et al., 1998). This can be
modelled following the differential equation
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The luminosity, I, is typically referred to in erg s 1 but is given here in SI
units of Watts (and thus introducing the conversion factor of

W s erg107 1). The percentage of energy that is converted to radiation is
quantified by the luminous efficiency, τ. v and m are the velocity and
mass of the meteoroid with t being the observation time and σ the
ablation parameter.

As fireball observations by the DFN are only in the visible wave-
lengths, as is typical for such networks, the luminosity values need to be
adjusted depending on the meteoroid temperature. A value of
1.5×1010 is used to relate a typical source temperature of 4500 K to
the luminosity in the visual pass-band, Iv (Ceplecha et al., 1998). If the
observed brightness values can be expressed in absolute visual stellar
magnitudes, Mv, then a comparison may be made to models using Eq.
(1) by:
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Incorporating the fireball’s calculated luminosity into the particle filter
methodology is able to provide an additional observation to the filter,
helping to further constrain mass loss estimates. The luminosity of a
fireball can be calculated based on the long exposure images or by
calibrating the measurements of an external device such as a radio-
meter.

When a fireball is captured by multiple Desert Fireball Network

remote observatories, each camera image is calibrated using the back-
ground star field to determine an astrometric azimuth and elevation for
positions along the fireball trail. This method of calibration (detailed by
Devillepoix et al. (2018)) accounts well for any effects of atmospheric
refraction, and the uncertainty introduced by the calibration is typically
less than 1 arcminute. The DFN camera systems encode absolute timing
in fireball trajectories using a modulated liquid crystal shutter within
the lens of each camera (Howie et al., 2017). The De-Brujn encoding
embedded within the fireball trail itself is synchronised across the
network via GNSS. This gives us the unique capability of individually
triangulating meteoroid positions for every discrete time-step with
multi-station observations. This has not hereto been possible. Despite
the uncertainties, with correct error analysis this triangulation of dis-
crete observation times can give us ‘ground truth’ positions of the
meteoroid with which we can compare different approaches to me-
teoroid trajectory analyses.

Here we assess the viability of a straight line assumption for fireball
data by comparing straight line positions to those calculated using this
unique triangulation capability of the DFN. We also propose a three
dimensional particle filter to model meteoroid positions without any
straight line constraints. The single body equations in three dimensions,
along with the luminosity equation, are applied to the particle filter
methodology described by Sansom et al. (2017). In doing this, the ob-
servations used by the filter to update the state vector are permitted to
be in the form of the raw line-of-sight observations in azimuth and
elevation as well as luminosities (where available). This drops the
simplifying assumption of a straight line trajectory entirely, as particles
are free to move in three dimensional space. Error propagation is
thorough as the filter considers the observational uncertainties in each
azimuth and elevation individually as well as considers trajectory
model limitations.

The better the understanding we have of the final state of a me-
teoroid, and the uncertainties throughout the modelling phase, the
more confidence we have in predicted fall regions. This may sig-
nificantly influence decisions regarding the feasibility of ground-based
searches for meteorites.

2. Assessing the limitations of the straight line assumption

Historically, there have been two predominant meteoroid triangu-
lation methods; the method of planes (Ceplecha, 1987) and the straight
line least squares (SLLS) method (Borovička, 1990). The method of
planes involves finding the best fit, 2D plane for each observatory that
contains both the observatory location and the line-of-sight meteoroid
observations. The intersection of multiple planes defines the trajectory;
in the case of more than two observatories, this will result in multiple
trajectory results which are then averaged in practice. The straight line
least squares method on the other hand determines a best fit, straight
line radiant for the trajectory considering all the raw observations at
once. This is done by minimising the angular difference between the
observed lines of sight and the line joining the observatory to the closest
corresponding point along the best fit radiant line. By assuming a
straight line trajectory, this effectively destroys any subtleties in the
data by forcing it to fit what may potentially be an oversimplified
model. The straight line assumption may be an acceptable simplifica-
tion for some events, especially short, fast meteors, but may not always
be valid for longer fireballs with significant deceleration and should be
tested.

A least squares approach however does not rigorously examine the
uncertainties in observations, or the limitations posed by the single
body model used, when evaluating errors. Typically the observational
residuals to a straight line fit are quoted as positional uncertainties for
the trajectory. This is not valid as the errors induced by using any model
must be incorporated. Despite the decrease in residuals when con-
sidering the upper sections of the trajectory only (observations of the
fireball above 50 km), it must be noted that this is not a good measure
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of the true trajectory uncertainties as the model errors are not taken
into account.

The reference frame in which the straight line is fitted also needs be
considered for such long, decelerating events and is rarely discussed. It
is expected that a fireball trajectory is approximately straight in an
inertial reference frame only, and that Earth rotation effects will cause
an apparently curved path for an observer on the ground. This requires
accurate timing throughout the meteoroid flight. Although Ceplecha
(1987) adjust entry vectors for both Earth rotation and gravity, this is
intended to correct the heliocentric orbit beyond the sphere of influence
of the Earth. The SLLS method of Borovička (1990) allows the in-
corporation of time differences between measurements to account for
Earth rotation effects, though it is not a requirement of the method; the
authors even state that the local sidereal time of the observer is usually
assumed to be constant throughout a meteor’s flight. For short events
that do not show any significant deceleration, it is unlikely that these
effects would be noticeable within the error of the observations. For
fireballs that are longer and show significant deceleration however, this
may no longer hold true. Most trajectory analyses of recent fireball
events (Brown et al., 2011; Borovička et al., 2013; 2015; Spurný et al.,
2017) cite the SLLS of Borovička (1990) as the method of trajectory
determination, though it is not made apparent in every case which
considerations have been made. Uncertainties in triangulated positions
are also often quoted as the residuals to the straight line (Spurný et al.,
2010; Borovička et al., 2013; 2015; Spurný et al., 2017) fit without
taking into consideration the error of the straight line model and are
therefore not a true representation of the trajectory uncertainty.

2.1. Point-wise triangulation

The unique method used by the DFN camera systems to encode
absolute timing in fireball trajectories is synchronised across the net-
work via GNSS. The instantaneous meteoroid position for a given time

step can therefore be evaluated using what we here refer to as a point-
wise triangulation (schematically illustrated in Fig. 1). Point-wise trian-
gulation estimates the meteoroid position, ℓ, by minimising the angular
separation, θ, between the calculated line-of-sight unit vector to ℓ and
the observed line-of-sight unit vector, zn for each observatory, On (where
zn, ℓ and On are in an ECEF rectangular geocentric coordinate system).
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2
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The resulting individually triangulated positions (ITPs) are used as a
reference for comparison of trajectory models.

2.2. Introducing two fireball test cases

Here we detail two fireballs observed by the Desert Fireball Network
and assess the appropriateness of a straight line trajectory fit for these
cases.

2.2.1. Case 1: DN151212_03 – long, shallow
On the 12th of December 2015, at 11:36:23.826 UTC, a > 21 s

long fireball over South Australia was captured by five DFN ob-
servatories east of Kati Thanda (hereafter referred to as event
DN151212_03). DFN systems at this time were designed to capture one
25 s, long exposure image every 30 s, and the fireball was split over two
consecutive images. The fireball appeared in the last ∼ 2 s of the first
exposure, was unobserved during the gap between exposures, and
further captured for another ∼ 14 s in the second exposure, with a final
observation time at 11:36:45.526 UTC. Fig. 2 shows the second ex-
posure captured by the observatory closest to the terminal point
(DFNO_39). The modulation of the liquid crystal shutter used to encode
absolute and relative timing can be seen as long and short dashes along
the trajectory. Initially the entire 21.7 s trajectory was fitted using the
straight line least squares (SLLS) method following Borovička (1990).

Fig. 1. Schematic representation (not to scale) of five unique time steps observed by two DFNOs. Difference between the straight line least squares trajectory points
(red) and the individually triangulated positions (green) are highlighted in red. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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As absolute timing is known to a high accuracy, this is preferably
performed in an Earth centred, inertial (ECI) reference frame, though a
non-inertial (Earth centred, Earth fixed; ECEF) solution is also calcu-
lated to assess the variation in fits (and subsequent radiant values are
converted to J2000 for comparison). A 1D extended Kalman smoother
trajectory analysis (Sansom et al., 2015) on these straight line data
estimates the trajectory parameters. The results for both reference
frames are given in Table 1.

The cross-track residuals of individual camera observations to the
straight line fit (in ECI) can be seen in Fig. 3. These cross-track residuals
show the minimum distance between the observed lines of sight and the
straight line triangulated trajectory and do not include along-track er-
rors in triangulated positions. The 13.56 arcmin difference in entry
radiant between inertial and non-inertial reference frames (Table 1)
shows the importance of including Earth rotation effects (this exceeds
the typical < 1 arcmin astrometric uncertainties of DFN observa-
tions). The > 1 km residuals show this is an inappropriate fit to the
trajectory.

By considering only the observations above 50 km we hope to

improve the fit and calculate a more realistic entry radiant. The cross-
track residuals to the straight line fit (in ECI) for its subset are seen in
Fig. 4. The decreases in observation residuals to the straight line model
shows a significantly improved fit, providing a more reliable entry ra-
diant (43.10′ difference between Tables 1 and 2 ECI values). Despite the
decrease in residuals, it must be noted that this is not a good measure of
the true trajectory uncertainties as the model errors are not taken into
account. Updated entry parameters given in Table 2 are again calcu-
lated using an EKS (Sansom et al., 2015), which incorporates both
observational and model errors in the quoted uncertainties. Non-in-
ertial SLLS (ECEF) results are also quoted to highlight that despite
improved fits in both reference frames, the radiant angles are still se-
parated by nearly 2′ which is double observational uncertainties. A si-
milar exercise can be performed with the lower half of the trajectory
(observations < 50 km). Fig. 5 shows that a SLLS fit to these data still
does not well represent the data and is little improved from Fig. 3.
Rather than continuing to chop the trajectory into increasingly small
segments, we can observe the path of the ITPs relative to the entry
radiant calculated in Table 2. Fig. 6 is a view looking down the ECI
entry radiant (white point). This “down-line” view projects all points
onto the plane normal to the straight line trajectory, resulting in the ECI
trajectory stacking to a single point. The x-axis is truly horizontal, and
as the meteoroid travelled from North to South, negative deviations are
to the East, while positive deviations are to the West. The y-axis is the
deviation above and below the straight line trajectory and values can be
translated to true vertical using the cosine of the trajectory slope. From
this down-line view, we can gain an understanding of the true non-
linearity of the DN151212_03meteoroid trajectory; the lower half is not
randomly scattered around a straight line as points above 50 km are,
rather they show a distinct lateral deviation to the East. This also shows
that, despite the 21.7 s trajectory theoretically accumulating a 2.1 km
vertical drop due to gravity, this is not the cause of the deviation from a
straight line.

This fireball represents an interesting case, showing that effects
other than Earth rotation and gravity are involved in significantly in-
fluencing trajectories. This long, shallow trajectory however is certainly
not a regular event. Next we perform a similar analysis on a more ty-
pical fireball case.

2.2.2. Case 2: DN160410_03 – typical event
On the 10th of April 2016, at 13:09:02.526 UTC, a ‘typical’ fireball

was observed by three DFN observatories over central South Australia,
near lake Cadibarrawirracanna (event DN160410_03, Fig. 7). It is an
ideal case to analyse as it was nearly equidistant to all cameras, with the
angle of observing planes at 46°/52°/80° (Fig. 8), and 88 of the 91 total
observations made (from identifying the starts and ends of the trajec-
tory dashes) were visible in all three still images (Fig. 7). There is little
observable fragmentation in the still images and no major peaks no-
ticeable in the light curve which is regular and symmetric. The method
used by the DFN to calculate the luminosity of an event is only ap-
plicable when an event does not saturate the sensor, which was un-
fortunately the case for the other two viewpoints, DFNO_27 and
DFNO_32.

As with event DN151212_03, a straight line least squares (SLLS)
triangulation of this event was calculated. Initially for the entire tra-
jectory (Fig. 9), with resulting parameters determined using the EKS
given in Table 3. Although this event is steeper and significantly
shorter, gravity still contributes a 105 m downward component over
the 58 km long trajectory and Earth rotation an apparent 1.9 km lateral
deflection to an observer on the ground. The ECI and ECEF entry ra-
diants show a 12.93′ separation (Table 3).

Despite the apparently reasonable fit of the straight line to the entire
trajectory in this case, we once again isolate the observations above
50 km and re-triangulate this upper dataset (Fig. 10). The ECI entry
radiant changed by a not insignificant 17′ (Table 4).

With this new entry radiant, we can once again project the ITPs onto

Fig. 2. DN151212_03 fireball as seen from Etadunna Station, South Australia,
travelling from North (top) to South (bottom) with a final recorded point at
11:36:45.526 UTC. Calibration with background stars determines azimuth and
elevation of trajectory points.

Table 1
Straight line least squares (SLLS) trajectory triangulated in either an inertial
(ECI) or non-inertial (ECEF) reference frame for all observations of event
DN151212_03. Trajectory characteristics (height, velocity, mass) are estimated
using an extended Kalman smoother in one dimension on these straight line
data. Entry slope is given as an angle from horizontal. Despite the reference
frame used to calculate the straight line, radiants are given in J2000 equatorial
coordinates for comparison; the angular separation between the two radiants is
13.56′ (0.23°).

DN151212_03 (full) ECI ECEF

Entry radiant – RA ( °) 23.77 ± 0.37 23.99 ± 0.22
Entry radiant – DEC ( °) 46.17 ± 0.13 46.00 ± 0.15
Initial height (km) 87.7 ± 0.1 88.5 ± 0.1
Initial velocity (km s 1) 13.21 ± 0.13 13.15 ± 0.13
Initial mass (kg) 35 ± 2 33 ± 2
Entry slope, γe (°) 16.4 16.5
Final height (km) 26.5 ± 0.1 26.4 ± 0.2
Final velocity (km s 1) 3.03 ± 0.21 2.93 ± 0.11
Final mass (kg) 2.0 ± 0.2 1.9 ± 0.3
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the plane normal to it, allowing us to observe how the meteoroid po-
sitions track in the lower section of the trajectory (Fig. 11). Despite this
event being a more typical example, with acceptable observational re-
siduals, there is still a not insignificant lateral trend to the end me-
teoroid positions as shown by the ITPs in this figure.

2.2.3. Summary of straight line comparisons
Event DN151212_03 may be considered unique in its duration, and

its non-linear flight path with up to 2.1 km of lateral deviation an
anomaly, but in performing a similar analysis to the more typical event
DN160410_03 we are still able to notice a distinct pattern/wander to
the end of the trajectory. These deviations from a straight line cannot be
accounted for by gravity, and Earth rotation effects are removed when
an inertial reference frame is used. It is clear that there are real lim-
itations to the straight line assumption and it is best to consider mod-
elling fireball trajectories without any pre-defined assumptions; allow
the raw observations to be the sole influences on the data. To achieve
this we can apply the single body equations in three dimensions to the
particle filter methodology described by Sansom et al. (2017). This will
utilise raw astrometric observations to resolve meteoroid position es-
timates.

3. Particle filter modelling using three dimensional meteoroid
flight and luminosity

The iterative Monte Carlo technique of the particle filter allows a
broad range of trajectory parameters (including densities, shapes and
ablation parameters) to be explored, and favourable values to be
identified, in a more robust way than a brute force least squares

approach. A set of tracer particles are propagated through the motion
and luminous equations, and their weightings evaluated at each time
step according to their closeness to available observational data. A
detailed description of applying particle filters to meteoroid trajectories
is presented in Sansom et al. (2017). Although Sansom et al. (2017)
apply the single body equations as a model, the adaptive approach uses
appropriate covariances to incorporate, to some extent, unmodelled
processes such as fragmentation.

Particle filters fall within the class of Bayesian state-space methods
which use a vector, x, to represent the state of a system. In meteoroid
trajectory analysis this includes the motion parameters (position and
velocity) as well as other trajectory variables.

To use a three dimensional model for flight, we divide positions and
velocities into their x, y, z components in geocentric coordinates.
Incorporating the luminous efficiency into the state vector allows lu-
minosity values to be calculated. Eq. (4) represents the meteoroid state
and encapsulates the knowledge of the meteoroid system at a given
time tk.

=
v
v
v
m

x

position in X
position in Y
position in Z
velocity in X
velocity in Y
velocity in Z
mass
shape-density parameter
ablation parameter
luminous efficiency parameter.

k

x k

y k

z k
x k
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z k
k
k
k
k

;

;

;
;
;

;

(4)

Fig. 3. Cross track residuals for individual station observations of DN151212_03 to a straight line trajectory fit in an inertial (ECI) reference frame. Range values in
legend are the minimum and maximum distances of a station to the fireball trajectory. Error bars on observations are 1σ astrometric errors projected at the
corresponding range. The gap between 82 and 62 km corresponds to the ∼ 5 s gap between exposures.
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The shape-density and ablation trajectory parameters are given by

= =c A c
c H
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2

and
*

,d

m

h

d
2/3

where cd and ch the drag and heat transfer coefficients respectively, A is
the shape parameter as described by Bronshten (1983), ρm the bulk
density of the meteoroid, and H* the enthalpy of sublimation.

This state is determined by assessing the conditional probability
density function p(xk|z0: k) given an observation zk of the system at time
tk (z0: k therefore being the history of all observations from time t0
through to time tk).

This is achieved through the three state-space equations:

(i) The state prior,

p x( ),0 (5)

which is the probability density function that encapsulates prior
knowledge of the state of the system and initialises the recursion.

(ii) The process equation,

= ++ fx x u( ) ,k k k1 (6)

defines the evolution of the state in discrete time, with process
noise uk.

(iii) The measurement equation,

= +hz x w( ) ,k k k (7)

uses the measurement function h(xk) to correlate the state of the me-
teoroid to the given azimuth and elevation measurements from camera
observatories. Observation noise, wk, is assumed to be Gaussian with a
mean of zero and covariance Rk in degrees (Rk represents observational
error). Further explanation of the measurement function are detailed in
Section 3.1.

Although fireball observations are made in discrete time, modelling
the meteoroid dynamics is more appropriate using continuous model
equations. Continuous-time differential state equations (fc(x)) may be
integrated in order to attain the form needed for the process Eq. (6):

= ++
+ f dtx x u( ) .k t

t
c k1

k

k 1

(8)

Although fc(x), using the single body equations, is non-linear, the

Fig. 4. Cross track residuals for the upper half of the DN151212_03 trajectory to a straight line fit in an inertial (ECI) reference frame. Only observations of the fireball
above 50 km were used. Error bars on observations are 1σ astrometric errors projected at the corresponding range.

Table 2
Straight line least squares (SLLS) trajectory triangulated in either an inertial
(ECI) or non-inertial (ECEF) reference frame for observations of event
DN151212_03 above 50 km only. Trajectory characteristics (height, velocity,
mass) are estimated using an extended Kalman smoother in one dimension on
these straight line data. Despite the reference frame used to calculate the
straight line, radiants are given in J2000 equatorial coordinates for comparison;
the angular separation between the two radiants is 1.77′ (0.03°).

DN151212_03 ( > 50 km) ECI ECEF

Entry radiant – RA ( °) 24.18 ± 0.01 24.14 ± 0.01
Entry radiant – DEC ( °) 45.51 ± 0.01 45.51 ± 0.01
Initial height (km) 89.99 ± 0.02 89.97 ± 0.02
Initial velocity (km s 1) 13.52 ± 0.06 13.47 ± 0.05
Entry slope, γe (°) 17.1 17.1

E.K. Sansom et al. Icarus 321 (2019) 388–406

393



discrete-time process noise, uk, can be closely approximated by
Gaussian noise with zero mean and covariance Qk (Qk corresponds to
how well the process equation represents the true system).

A particle filter is very flexible and requires no constraints on the
linearity of state equations, nor the noise distributions (Ristic et al.,
2004). This is due to there being no single representation of the state
prior, rather a set of Ns weighted particles are used to represent the
distribution.

Each ith particle can be represented at any time tk by its state, x ,k
i

and weight, wk
i as:

= …w i Nx{ , } 1, , ,k
i

k
i

s (9)

with weights normalised as:

=w 1.
i

N

k
i

s

(10)

Particle weights are evaluated according to how well a particle’s state
represents the available observational data. The weighted mean of the
distribution, x̂ ,k can be approximated at any time tk as:

= wx x^ ,k
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(11)

with covariance
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k k
i

k
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s

(12)

There are three steps in running a particle filter, similar to other

Bayesian filtering methods: initialisation, prediction, update. Sansom
et al. (2017) provides a detailed methodology for a one dimensional
trajectory model. Here we will outline the variations required to allow a
particle filter to be performed in three dimensions and incorporate
absolute visual magnitude observations.

3.1. Initialisation using point-wise triangulation

An initial set of particles is required that best represents the state
prior (5) of the meteoroid system; initialisation in 3D requires an ap-
proximate start location. As the full data set is available at the time of
executing the particle filter, the initial position and velocity compo-
nents may be more accurately estimated from the observational data.
The instantaneous meteoroid position for a given time step can be
evaluated using point-wise triangulation (see Section 2.1). Performing a
point-wise triangulation on the first handful of multi-station observa-
tions produces a set of individually triangulated positions (ITPs) from
which the instantaneous velocity of the meteoroid can be determined –
simply taking the difference in positions with time: = +

+
vk

d
dt

k k
k k

: 1
: 1

. Due to
the inherent scatter in the ITPs and therefore velocities, v0 may be
reasonably well approximated by assuming constant deceleration be-
tween the first few multi-station observations and t0:

= ×d
dt

tv v v ,m m0 (13)

where tm is the relative time of the first available multi-station ob-
servations and the value of vm and d

dt
v are determined by a linear least

squares fit to the scattered velocities.

Fig. 5. Cross track residuals for the lower half of the DN151212_03 trajectory to a straight line fit in an inertial (ECI) reference frame. Only observations of the fireball
below 50 km were used. Error bars on observations are 1σ astrometric errors projected at the corresponding range.
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If the first ITP is at t0, its position can be used to initialise the first
three components of the state vector (4). If tm≠ t0 (multi-station data is
not available at t0), an initial position may then be roughly approxi-
mated by rearranging and integrating (13) with respect to time:

= ×t d
dt

tv v1
2

.m m m0 0
2

(14)

The initialisation of particle state parameters for position and ve-
locity at t0 is then drawn from a Gaussian distribution shown by

= = = …i NP v v P( ; ) ( ; ) 1, ,i i
sv0 0 ;0 0 0 ;0 (15)

where mean values of the ℓ0 and v0 vectors are calculated as described
above, and covariance values, P0, are determined by the uncertainty in

this least squares fit and may vary for each directional component.
Possible original values for mass, κ and σ can be randomised within

theoretical bounds (see Table 1 of Sansom et al. 2017). A similar con-
cept can be applied to the luminous efficiency; here we randomise
within the range 0.01% < τ < 10% after Ceplecha and Revelle (2005)
and Ceplecha et al. (1998). All particles are initially weighted equally as

=wi
N0
1

s
.

3.2. Filter prediction using three dimensional state equations

Recursion commences after initialisation, beginning with a forward
prediction of particles from tk to +tk 1 by the process Eq. (6).

The change in trajectory parameters κ, σ and τ with time is not well

Fig. 6. “Down-line” view (c) as seen by an observer looking down the ECI straight line radiant (illustrated by (a)–(b)) calculated using the top half of the trajectory
(points > 50 km; see Fig. 4). This results in the ECI trajectory stacking to a single point (white) whereas the individually triangulated positions (ITPs; coloured
points) are projected onto the viewing plane. This plane is normal to the straight line trajectory with the x-axis aligned with the Earth horizontal, and inclined from
true vertical by the cosine of the trajectory slope. From this down-line view the ITPs help to illustrate the true non-linearity of the path taken by the meteoroid.
(Google Earth image credit: Landsat/Copernicus/CNES/Airbus).

E.K. Sansom et al. Icarus 321 (2019) 388–406

395



known and at this stage is assumed to be nil (see discussion related to
Eq. (20)):

= = =d
dt

d
dt

d
dt

0.
(16)

In order to analyse the full trajectory in 3D, the differential equa-
tions of motion must be split into their vector components:

=d
dt

v
(17a)

= +d
dt

mv v v ga
µ( 1)

(17b)

=dm
dt

m v ,a
µ 3

(17c)

where ℓ and v are the position and velocity vectors, g is the local
gravitational acceleration vector, and ||v|| is the magnitude of the ve-
locity. μ is the shape change parameter, representing the rotation of the
body, here assumed to be 2/3, representing spin rapid enough for ab-
lation to be uniform across the entire surface (Bronshten, 1983). At-
mospheric densities, ρa, can be calculated using the NRLMSISE-00 at-
mospheric model (Picone et al., 2002).

This gives the continuous-time state equation for a meteoroid tra-
velling through the atmosphere in 3D as:

=f dl
dt

dl
dt

dl
dt

dv
dt

dv
dt

dv
dt

dm
dt

d
dt

d
dt

d
dt

x( ) , , , , , , , , , .c
x y z x y z

(18)

with the continuous-time Gaussian process noise uc of zero mean and
covariance Qc. The discrete-time process noise covariance, Qk can be
approximated as

= + e e dtQ Qk t

t Ft
c

F t
k

k T1

(19)

using the linearised form of the process equation, =F f x
x
( )c (Grewal and

Andrews, 1993). In the 3D filter, we use

=

×

diag m s m s m s
m s m s m s

m kg s m kg s
s km

Q [(0 ), (0 ), (0 ),
(75 ), (75 ), (75 ),
(0.8 ), (10 ),
(10 ), (0.001 %)] ,

c

k

1 1 1

2 2 2

1 3 2 2/3 1

4 2 2 (20)

where each element along this square matrix diagonal represents the
uncertainty of each differential model equation in (18). That is, the
uncertainty in position and velocity components are introduced
through noise in the acceleration model (17b), therefore allowing the

Fig. 7. DN160410_03 fireball as seen from three DFN stations in South
Australia, starting at 13:09:02.526 UTC. Calibration with background stars
determines azimuth and elevation of trajectory points.

Fig. 8. Configuration of DN160410_03 observations. White observation rays correspond to the start and end points of the trajectory dashes in Fig. 7. (Google Earth
image credit: Landsat/Copernicus).
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variance of =d dt/ 0 m s 1. The process model for dm/dt is not able to
fully represent the change of mass due to fragmentation; the process
noise is therefore set as a relatively high percentage of the existing
mass. Although the trajectory parameters κ, σ and τ are currently as-
sumed to be constant (16), this is not entirely true; process noise is
therefore attributed to allow small variations to these parameters
throughout the trajectory (20).

The discrete process noise, Qk, is then calculated from Eq. (19) at

every time step along the trajectory.

3.3. Line-Of-Sight measurement update

Images taken by each observatory show a discontinuous streak
across a star background. The Desert Fireball Network uses the mod-
ulation of a liquid crystal shutter within the lens of each camera to
encode a unique time sequence into the fireball’s path (Howie et al.,
2017). By comparing the position of the start and end of each fireball
segment with the background stars, the azimuth and elevation of each
time encoded data point can be determined (Devillepoix et al., 2018).

The astrometric observations of the fireball, zk, are a series of an-
gular measurements. The measurement function in Eq. (7) extracts the
position vector (ℓ) from the state which will be compared to these ob-
servations and performs the transformation required. Within this
function, k

i is converted from geocentric cartesian coordinates to a
calculated line-of-sight azimuth and elevation with respect to each
observatory. At each tk, this conversion is required for each station that
made an observation. The cartesian vector between each n observatory
and the particle position, is rotated into local observatory-centred co-
ordinates (East, North, Up; a[^ ]k

i n
ENU

; ) before subdividing it into its alti-
tude and elevation components:

=az moda aarctan 2([^ ] , [^ ] ) ( 2 )k
i n

k
i n

E k
i n

N
; ; ;

(21)

=el aarcsin([^ ] ).k
i n

k
i n

U
; ;

(22)

Fig. 9. Cross track residuals for individual station observations of DN160410_03 to a straight line trajectory fit in an inertial (ECI) reference frame. Range values in
legend are the minimum and maximum distances of a station to the fireball trajectory. Error bars on observations are 1σ astrometric errors projected at the
corresponding range.

Table 3
Straight line least squares (SLLS) trajectory triangulated in either an inertial
(ECI) or non-inertial (ECEF) reference frame for all observations of event
DN160410_03. Trajectory characteristics (height, velocity, mass) are estimated
using an extended Kalman smoother in one dimension on these straight line
data. Despite the reference frame used to calculate the straight line, radiants are
given in J2000 equatorial coordinates for comparison; the angular separation
between the two radiants is 12.93′ (0.22°).

DN160410_03 (full) ECI ECEF

Entry radiant – RA ( °) 161.76 ± 0.02 161.98 ± 0.02
Entry radiant – DEC ( °) ±4.65 0.02 ±4.61 0.02
Initial height (km) 79.1 ± 0.05 79.1 ± 0.02
Initial velocity (km s 1) 15.2 ± 0.1 15.2 ± 0.1
Initial mass (kg) 1.6 ± 0.7 1.5 ± 0.6
Entry slope, γe (°) 64.3 64.8
Final height (km) 26.7 ± 0.07 26.6 ± 0.05
Final velocity (km s 1) 4.0 ± 0.4 4.0 ± 0.7
Final mass (kg) 0.05 ± 0.01 0.06 ± 0.01
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For consistency in calculated and true angular measurements, the azi-
muth value is expressed within the 0–2π radian range. As an azimuth
value of 0 radians is congruent with that of 2π radians, a modulo op-
eration is included in (21).

The result of the measurement function, ẑk
i is the predicted line-of-

sight unit vectors for a given particle i in azimuth and elevation from all
observatories and can be summarised by:

= …az el az elẑ [ , , , , ].k
i

k
i

k
i

k
i

k
i;1 ;1 ;2 ;2 (23)

A multivariate Gaussian probability is then used to calculate the position
weighting of a particle:

= ( )w eR[ ˜ ] 2 | | ,k
i

pos k
z z R z z1 1

2 [^ ] ^Ns k k
T

k k
i

k
2

1
2

1

(24)

where |Rk| is the determinant of the observation noise covariance
matrix containing azimuth and elevation errors pertaining to each ob-
servatory:

= …diag Var az Var el Var az Var elR [ ( ), ( ), ( ), ( ), ].k
1 1 2 2 (25)

The observational uncertainties in both azimuth and elevation are
linked to the accuracy of picking the start and end points of modulated
segments in the fireball image, their calibration and the shutter re-
sponse time. For all-sky images captured using fish eye lenses, the ac-
curacy in azimuth is much greater than in elevation. Although the DFN
observations are syncronised in time, this is not required by the 3D
particle filter; only muti-station observations which include absolute
timing data are needed.

3.4. Luminosity measurement update

As well as considering the line-of-sight observations, the calculated
absolute visual magnitude observations, M ,v

obs may also be used to
constrain mass loss estimates. Observed luminosities can be obtained
from the long exposure images by doing aperture photometry on each
shutter break. These measurements are then converted to apparent
magnitudes using the stars, accounting for the different exposure times.
Apparent magnitudes are finally turned into absolute magnitudes
(Mv

obs) by doing a distance correction using the basic trajectory solution

Fig. 10. Cross track residuals for the upper section the DN160410_03 trajectory to a straight line fit in an inertial (red; ECI) and non-inertial (blue; ECEF) reference
frame. Only observations of the fireball above 50 km were used. Error bars on observations are 1σ astrometric errors projected at the corresponding range. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Straight line least squares (SLLS) trajectory triangulated in either an inertial
(ECI) or non-inertial (ECEF) reference frame for observations of event
DN160410_03 above 50 km only. Trajectory characteristics (height, velocity,
mass) are estimated using an extended Kalman smoother in one dimension on
these straight line data. Despite the reference frame used to calculate the
straight line, radiants are given in J2000 equatorial coordinates for comparison;
the angular separation between the two radiants is 0.21′ (0.004°).

DN160410_03 ( > 50 km) ECI ECEF

Entry radiant – RA ( °) 161.981 ± 0.016 161.984 ± 0.015
Entry radiant – DEC ( °) ±4.469 0.017 ±4.469 0.016
Initial height (km) 79.13 ± 0.01 79.12 ± 0.01
Initial velocity (km s 1) 15.22 ± 0.06 15.18 ± 0.02
Entry slope, γe (°) 64.2 64.7
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given by the SLLS. A combination of Eqs. (1) and (2) are used to cal-
culate the predicted visual magnitude for each particle, Mv

i between tk
and +tk 1. The luminous weighting for each particle, w[ ˜ ]k

i
lum can then be

obtained by evaluating the 1D Gaussian probability distribution func-
tion

=w
R

e[ ˜ ] 1
2k

i
lum

k

M M
R

( )
2

v
obs

v
i

k

2

(26)

where Rk here is the uncertainty in the observed Mv values. This can
include errors introduced in the calibration process that is usually

Fig. 11. DN160410_03 – “Down-line” view (c) as seen by an observer looking down the ECI straight line radiant (illustrated by (a)–(b)) calculated using the top
section of the trajectory (points > 50 km; see Fig. 10). This results in the ECI trajectory stacking to a single point (white) whereas the individually triangulated
positions (ITPs; coloured points) are projected onto the viewing plane. This plane is normal to the straight line trajectory with the x-axis aligned with the Earth
horizontal, and inclined from true vertical by the cosine of the trajectory slope. From this down-line view the ITPs help to illustrate the true non-linearity of the path
taken by the meteoroid. (Google Earth image credit: Landsat/Copernicus/CNES/Airbus).
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required to convert arbitrary brightness units to distance-normalised,
absolute visual magnitudes.

The overall weighting of each particle including both line-of-sight
and absolute magnitude observations can then be calculated as the
product of normalised position and luminous weightings:

=w w w˜ [ ˜ ] [ ˜ ] ,k
i

k
i

pos k
i

lum (27)

which can then be normalised

=w w
w

˜
˜

.k
i k

i

j
N

k
js

(28)

3.5. Results of the 3D particle filter

As this is a filtering technique, the 3D particle filter iteratively
converges upon a final state estimate that combines all observational
data, and uncertainties. The estimate at any discrete time is the best
guess of the filter up until that point; there is no full trajectory solution.
A smoother is able to combine forward and reverse filters to give a full

solution (such as the extended Kalman smoother in Sansom et al.
(2015) and multiple model smoother in Sansom et al. (2016)). Particle
filter smoothing is still being developed and is not described in this
work. To this end, the results desired dictate the order in which ob-
servations are presented. As we focus on determining likelihood of final
mass estimates for meteorite recovery, we perform a 3D particle filter
forward in time on these two test cases using =N 100, 000s . If entry
masses were to be desired, the filter can be initialised at tf and run in
reverse time order (from terminal point to entry point).

The distance between the ITPs and all predicted particle positions
for event DN151212_03 are shown1 in Fig. 12 and for event
DN160410_03 in Fig. 13. The weighted mean residuals, as calculated by
Eq. (11), are marked in black. ITPs may give us a reasonable indication
of meteoroid position, but are sensitive to observational geometry and
error. Despite using the ITPs as reference positions for these figures, the

Fig. 12. The absolute distance between individually triangulated positions (ITPs; =y 0 with variances in green) and the estimated position of the DN151212_03
meteoroid using different methods of modelling a meteoroid trajectory: a straight line least squares approximation (SLLS) fitted to the entire suite of observations in
an ECI reference frame (grey), a SLLS fitted to the upper (above 50 km) and lower (below 50 km) segments of the trajectory separately (blue; see Section 2) and the
results of a 3D particle filter (weighted mean positions in black). The gap between km62 84 corresponds to the time between exposures. The final 1.22 s (∼ 800m
height) was only observed by a single observatory and no individually triangulated position could be calculated as a reference. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

1 In order to graphically represent such a large output file (number of parti-
cles plotted= ×N ks ) we made use of TOPCAT table processing software which
is an open source library for manipulating large tabular data (Taylor, 2005)
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3D particle filter is weighting estimates based on the raw observations.
The history information inherent in the particle ‘cloud’ provides a
certain inertia that prevents unrealistic changes to the overall mean
when unfavourable observations are made. Though there is still a
flexibility to the estimates that allows to an extent for unmodelled
factors (fragmentation etc. not included in the single body equations) to
be incorporated, as model uncertainty is considered in the process noise
covariance (Eq. (20)).

3.5.1. Case 1: DN151212_03
No absolute brightness data were acquired for this event as the

fireball saturated the sensors. The particle filter was still able to cal-
culate theoretical values for Mv, though only normalised values of
w[ ˜ ]k

i
pos Eq. (24) were used to determine particle weightings for this case.
The maximum deviation of any weighted mean to its corresponding

calculated observed position for DN151212_03 is 470m, with over half
within 80m. The higher mean values between 34 and 32 km could be
related to increased uncertainty in the ITPs for these observations
(Fig. 12), or could be indicative of an unmodelled cause. The large gap
in Fig. 12 between 62and84 km corresponds to the time between ex-
posures. For this event, the final 1.22 s (seven observation times) were
only visible from one camera (Fig. 2). The 3D particle filter still esti-
mates positions with single station observations, but the mean final

state estimate at =t 21.14 sf has slightly higher uncertainties because of
this. Particles are not shown in Fig. 12 for this final 760m as no in-
dividually triangulated position could be calculated as a reference. The
exploration of velocity state-space by the particles can be seen in
Fig. 14. Final state estimates are given in Table 5.

3.5.2. Case 2: DN160410_03
The mean particle positions for event DN160410_03 show a max-

imum deviation of 150m, with nearly 80% within 50m of the ITPs
(Fig. 13; black). Not only do the position estimates match the ob-
servations well, the calculated values of Mv (evaluated using Eqs. (1)
and (2)) also correspond well to the calibrated light curve for DFNO_30
(Fig. 15). The inferior weightings attributed toward the end are most
likely due to the calculation using the relatively constant value of τ
(around ∼ 0.2%). The good correlation between position and lumin-
osity estimates to observational data validates the results of the particle
filter, giving confidence to the estimates determined for other state
variables through the link in the state equations. The velocities for
example can also be compared to those calculated between ITPs and the
SLLS positions (Fig. 16). The exploration of this state space is inter-
esting to observe. For example, we can see that a lower velocity option
was tested at ∼ 55 km but discontinues; a high velocity option around
35 km experiences a similar fate. These discontinued streams can be

Fig. 13. The absolute distance between individually triangulated positions (ITPs; =y 0 with normalised variances in green) and the estimated position of the
DN160410_03 meteoroid using different methods of modelling a meteoroid trajectory: a straight line least squares approximation (SLLS) fitted to the entire suite of
observations in an ECI reference frame (grey), a SLLS fitted to the upper (above 50 km) and lower (below 50 km) segments of the trajectory separately (blue; see
Section 2) and the results of a 3D particle filter (weighted mean positions in black). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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linked to different mass options (Fig. 17). The final meteoroid states for
this exent at =t 4.6f are also given in Table 5.

4. Discussion

Fireball trajectories are typically approximated as straight line paths
over a spherical Earth (Ceplecha and Revelle, 2005). This may be a
reasonable assumption for short meteors, but for fireballs, effects that
cause deviations to a straight line trajectory are not always negligible.
The astrometric uncertainty on DFN observations is typically < 1

arcmin. This high precision, when projected at the observational range
to the fireball, gives uncertainties ∼ 100 m. Any disturbances to the
body greater than this will be resolvable. Gravity and Earth rotation
have known effects on trajectories and their observations respectively,
and can be quantified. The 231 km long trajectory of the shallow event
DN151212_03 ( = 17e ) was observed for 21.14 s. This means a
> 2.1 km downward displacement was experienced due to gravity
alone. Over this length of time, at the latitude of the event, an observer
on the ground would have moved nearly 8.5 km eastward with Earth’s
rotation. This must be accounted for if reduction is done in a non-in-
ertial reference frame. Event DN160410_03 was steeper ( = 65e ) and
significantly shorter in both duration (observed for 4.66 s) and length
(58 km). Gravity therefore contributes a 105 m vertical displacement.
The ground stations will also have moved 1.9 km eastward, affecting
apparent velocity vectors in a non-inertial frame.

Fitting a linear trajectory to observations of a meteoroid will reduce
the overall effects of gravity (and Earth rotation if using a non-inertial
frame) by essentially averaging them out. This may provide usable
position data, but will translate into a strong misrepresentation of ve-
locity vectors. The difference in entry radiants calculated in both an
inertial (ECI) and non-inertial (ECEF) frame for these trajectories de-
monstrates the effect of Earth rotation on these entry vectors. For event
DN151212_03 they vary by 13.56′ and for event DN160410_03 by
12.93′. Entry radiants are used in the calculation of fireball orbits.

Fig. 14. Magnitude of the velocity vector as calculated by the change in ITP positions with time (green) and as estimated by the 3D particle filter. The gap between 62
and 84 km corresponds to the time between exposures. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Table 5
Trajectory characteristics, including state values, estimated using the 3D par-
ticle filter for the final observation time of both events DN151212_03 and
DN160410_03.

Final state values for: DN151212_03 DN160410_03

tf (seconds since start) 21.14 4.66
Height (km) 26.3 ± 0.8 26.3 ± 0.06
Velocity (km s 1) 3.5 ± 0.3 3.8 ± 0.1
Mass (kg) 2.7 ± 0.3 0.13 ± 0.02
Shape density coefficient (κ ; m kg3 1) 0.0032 ± 0.0001 0.0039 ± 0.0001

↪ Density (kg m 3); if × =A c( ) 1.5d 3610 2650

Ablation coefficient (σ ; s km2 2) 0.0141 ± 0.00003 0.0192 ± 0.0003
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Integrating the fireball’s motion back in time, performed to determine
the heliocentric orbit beyond Earth’s sphere of influence, is highly
sensitive to both radiant direction and entry velocity. Using an in-
appropriate model to fit the observations introduces systematic errors
to radiant angles, and as shown in Tables 2 and 4, can be far greater
than the quoted uncertainties based on the residual fit for longer tra-
jectories. These systematic errors will affect orbit calculations, resulting
in the incorrect evaluation of a meteoroid’s orbit. The final velocity
vector is used in dark flight modelling to estimate meteorite fall posi-
tions and will have similar issues, perhaps even more pronounced due
to the lower velocities toward the end of the luminous trajectory.
Without a means of further testing meteoroid positions, there could be
other forces involved that cause unmodelled deviations to a meteoroid
trajectory.

Here we use individually triangulated positions (ITPs) as a base for
comparison between meteoroid positions calculated using a straight
line least squares approximation and a 3D particle filter. The calcula-
tion of the ITPs is a unique capability of the DFN as a result of absolute
synchronisation of the time encoding between observatories. We have

shown for both cases presented that there is a significant deviation of
the meteoroid body when comparing ITPs to a straight line trajectory.
To some degree the non-linear variability of these fireball trajectories
can be visualised in Figs. 6 and 11. The absolute difference between the
ITPs and the SLLS results are quantified for event DN151212_03 in
Fig. 12 and for event DN160410_03 in Fig. 13. For both the long,
shallow case (DN151212_03), and the steeper, shorter case
(DN160410_03), the straight line trajectory does not represent the data
well. For the triangulated positions using a straight line fitted to the
entire data set, positions diverge up to 3.09 km for the former and up to
360m for the latter. The straight line trajectories fitted to data seg-
mented at 50 km give improved results for DN151212_03 positions,
diverging up to 750m for the upper trajectory, and 810m for the lower
trajectory (discarding the 1.40 km outlier at 49.2 km). The segmented
triangulations for DN160410_03 show an improvement only in the
upper trajectory (290m), with an increased distance to the ITPs in the
lower segment (420m). These deviations show that factors other than
deceleration and ablation are able to significantly influence meteoroid
trajectories. These could include aerodynamic effects on non-spherical

Fig. 15. Comparison of light curve obtained from the DFNO_30 still imagery (green) and predicted absolute visual magnitudes from 3D particle filter (coloured based
on density of particles). The inferior match of higher weighted particles to the light curve toward the end can be attributed to the relatively constant value of τ
(around ∼ 0.2%) used for the calculation of predicted Mv values (Eqs. (1) and (2)). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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bodies and, where fragmentation occurs, the dynamics involved in body
disruption.

We can approximate the magnitude of the forces required to cause
the deviations seen in Figs. 6 and 11. Over the final 10 s of the
DN151212_03 trajectory (below 50 km), there is a lateral displacement
of ∼ 2.1 km. This results in an Eastward acceleration of ∼ 42 m s 2.
For a 10 kg body (minimum estimated mass at 50 km altitude), this
requires a lateral force of 420 N. The vertical displacement of ∼ 1.2 km
seen in Fig. 6 does not include any downward gravity component. As a
vertical force would also have to overcome gravity to cause this change,
an additional 460 m displacement should be included (gravitational
displacement normal to the trajectory over final 10 s =480 m× cos γ).
This gives a ∼ 330 N upward force. Although DN160410_03 wanders
less drastically, a ∼ 230 m lateral displacement from an altitude of
35 km (the final 1.3 s) requires a greater than 500 N lateral force for a
2 kg body (minimum estimated mass at 35 km). From 30.2–27.3 km
(the final 0.7 s), a vertical displacement normal to the trajectory of
∼ 170 m would require over a 1000 N force.

Work has been presented in the past on unique Earth-grazing events
where a significant effort has been made to determine the path of the
meteoroid without the unique use of a SLLS approximation (Borovicka
and Ceplecha, 1992; Madiedo et al., 2016). It is interesting to note
however that in Borovicka and Ceplecha (1992) there is an observatory
almost directly under the event from which the authors were able to
determine that there was no curvature to the trajectory outside the
observational plane from this viewpoint. For event DN151212_03

analysed here, there was a deviation from the SLLS trajectory not only
in altitude, but with a significant lateral component. Because of its large
size and extreme ablation duration, DN151212_03 may not be a typical
event, however DN160410_03 is an ideal example of a meteorite
dropping fireball. The deviation of the DN160410_03 fireball from a
straight line shows that an SLLS may not be an appropriate approx-
imation for the majority of deep-penetrating ( < 50 km altitude)
fireballs. The cross-track forces as approximated above, are certainly
significant, complicating the ideal straight line scenario and bringing
into question the reliability of using this assumption even for small
events. Their origins, be they aerodynamic, related to fragmentation or
as yet unconsidered, should be investigated.

The complexity of meteoroid trajectories makes it difficult to si-
mulate them with simplified model equations such as given by Eq. (17).
Using this single dimension model in a particle filter (e.g. Sansom et al.
(2017)) forces the measurement update step to use straight line position
values for distance travelled along the trajectory. This misrepresenta-
tion of the data in the filter can not only affect position estimates, but
may additionally influence other state parameters through the re-
lationship in the state Eq. (17), such as velocity and mass values. As the
particle filter is an adaptive approach that uses observations to update
state estimates, using the most unprocessed measurements permits
subtleties in the data to influence the predicted state. Using the three
dimensional model (17), it is able to use the raw line-of-sight ob-
servations as described in Section 3.3. Using a 3D particle filter also
provides a more robust error analysis as uncertainties are propagated

Fig. 16. Magnitude of the velocity vector as calculated by the change in ITP positions with time (green), change in straight line least squares (SLLS) triangulated
positions for each observatory with time (blue), and estimated by the 3D particle filter. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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comprehensively from well constrained astrometric errors through to
the end of the luminous trajectory. At tend, the remaining particles can
be used as a direct input to Monte Carlo dark flight simulations, as
presented by Devillepoix et al. (2018). The minimisation of time spent
in the field searching for meteorites is of great importance. It is there-
fore essential to define a search region on the ground that is re-
presentative of the statistical results obtained from physical modelling
of bright flight observations. The final mass given using an extended
Kalman smoother on pre-triangulated straight line data for event
DN151212_03 is 2.0 ± 0.2 kg (Table 1) and 0.05 ± 0.01 (Table 3) for
event DN160410_03, compared to the 2.7 ± 0.3 kg and
0.13 ± 0.02 kg final masses predicted for these events using the par-
ticle filter. Identifying events with greater chances of a successful find
will significantly influence decisions about the feasibility of a remote
search for a given event. Shallow events in particular, such as
DN151212_03 ( = 15. 8e ) tend to produce extended fall lines, tens of
kilometres long, from small fragments to main body masses. Well
constrained final states in these cases are essential.

5. Conclusion

As fireball producing events are typically associated with larger
asteroidal debris they have the ability to penetrate deep into the Earth’s
atmosphere. These events can last tens of seconds, with ground based
observations influenced by Earth’s rotation and gravity effects re-
solvable with modern camera resolution. The unique ability of the
Desert Fireball Network to triangulate a meteoroid’s position at discrete
times allows us to investigate the true variability of trajectories. These

individually triangulated positions (ITPs) are used as a reference for
comparison to other methods of evaluating meteoroid positions. The
flights of two fireballs observed by the Desert Fireball Network were
investigated as example events. Triangulating data using a straight line
assumption eliminates subtleties in the data that may be indicative of
unmodelled processes, such as fragmentation and aerodynamic effects.
Deviations from a straight line path of up to 3.09 km for event
DN151212_03 and 360m for event DN160410_03 were observed, and a
downline view in an inertial reference frame (ECI) shows this is mostly
lateral. The investigation in an ECI reference frame eliminates Earth
rotation effects, and, as these deviations cannot be accounted for by
gravity, must have a different cause. Even the more typical event
DN160410_03 is affected, showing all influences on fireball trajectories
should be considered in all deep penetrating cases. The mis-
representation of the start and end of meteoroid trajectories by a
straight line fit will affect dark flight models for meteorite search re-
gions as well as orbit determination.

Modelling fireball camera network data in three dimensions has not
previously been attempted. The self-contained particle filter approach
of Sansom et al. (2017) has been adapted to use a three dimensional
dynamic model, and incorporate absolute visual magnitude observa-
tions. This allows the raw astrometric observations as seen by each
observatory to be incorporated directly into the estimation of a me-
teoroid state, removing the need for pre-triangulated measurement
data. By incorporating the raw observations, errors in each azimuth and
elevation can be accounted for and propagated individually. This re-
sults in a final state estimate with fully comprehensive errors, leading to
more realistic meteorite search areas and will allow an automated,

Fig. 17. Masses estimated by the 3D particle filter, coloured by density of particles.
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systematic evaluation of trajectories observed by multiple station
camera networks.
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